DOI QR코드

DOI QR Code

Local Map-based Exploration Strategy for Mobile Robots

지역 지도 기반의 이동 로봇 탐사 기법

  • Received : 2013.05.08
  • Accepted : 2013.10.01
  • Published : 2013.11.30

Abstract

A local map-based exploration algorithm for mobile robots is presented. Segmented frontiers and their relative transformations constitute a tree structure. By the proposed efficient frontier segmentation and a local map management method, a robot can reduce the unknown area and update the local grid map which is assigned to each frontier node. Although this local map-based exploration method uses only local maps and their adjacent node information, mapping completion and efficiency can be greatly improved by merging and updating the frontier nodes. Also, we suggest appropriate graph search exploration methods for corridor and hall environments. The simulation demonstrates that the entire environment can be represented by well-distributed frontier nodes.

Keywords

References

  1. H. Choset, and K. Nagatani "Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization", IEEE Trans. Robotics and Automation, vol. 17, no.2, pp.125-137, 2001. https://doi.org/10.1109/70.928558
  2. M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte, and M Csorba, "A solution to the simultaneous localization and map building (SLAM) problem", IEEE Trans. Robotics and Automation, vol.17, no.3, pp.229-241, 2001. https://doi.org/10.1109/70.938381
  3. M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, "FastSLAM 2.0: an improved particle filtering algorithm for simultaneous localization and mapping that provably converges", in Proc. of International Joint Conference on Artificial Intelligence, pp.1151-1156, 2003.
  4. B. Yamauchi, "A frontier-based approach for autonomous exploration", in Proc. of Computational Intelligence in Robotics and Automation, pp.146-151, 1997.
  5. F. Bourgault, A. A. Makarenko, S. B. Williams, B. Grocholsky, and H. F. Durrant-Whyte, " Information based adaptive robotic exploration", in Proc. of International Conference on Intelligent Robots and Systems, pp.540-545, 2002.
  6. A. A. Makarenko, S. B. Williams, and H. F. Durrant-Whyte, "An experiment in integrated exploration", in Proc. of International Conference on Intelligent Robots and Systems, pp.534-539, 2002.
  7. S. Ahn, J. Choi, N. L. Doh, and W. K. Chung, "A practical approach for EKF-SLAM in an indoor environment: fusing ultrasonic sensors and stereo camera", Autonomous robots, vol.24, no.3, pp.315-335, 2008. https://doi.org/10.1007/s10514-007-9083-2
  8. C. Estrada, J. Neira, and J. D. Tard'os, "Hierarchical SLM: real-time accurate mapping of large environments", IEEE Trans. Robotics, vol.21, no.4, pp.588-596, 2005. https://doi.org/10.1109/TRO.2005.844673
  9. R. Sim, and N. Roy, "Global a-optimal robot exploration in SLAM", in Proc. of International Conference of Robotics and Automation, pp.661-666, 2005.
  10. C. Stachniss, G. Grisetti, and W. Burgard, "Information gain-based exploration using raoblackwellized particle filters", in Proc. of Robotics: science and systems, pp.65-72, 2005.
  11. S. Carpin, "Fast and accurate map merging for multirobot systems", Autonomous robots, vol.25, no.3, pp.305-316, 2008. https://doi.org/10.1007/s10514-008-9097-4
  12. S. Thrun, "Learning occupancy grid maps with forward sensor models", Autonomous robots, vol.15, no.2, pp.111-127, 2003. https://doi.org/10.1023/A:1025584807625
  13. J. Blanco, J. Fernandez-Madrigal, and J. Gonzalez, "A new approach for large-scale localization and mapping: Hybrid metric-topological SLAM", in Proc. of International Conference of Robotics and Automation, pp.2061-2067, 2007.
  14. P. Newman, and H. Kin, "SLAM-loop closing with visually salient features", in Proc. of International Conference of Robotics and Automation, pp.635-642, 2005.
  15. A. Nuchter, K. Lingemann, and H. Surmann, "Heuristic-based laser scan matching for outdoor 6D SLAM", in Proc. of KI 2005: Advances in Artificial Intelligence, pp.304-319, 2005.
  16. J. Choi, M. Choi, and W. Chung, "Topological localization with kidnap recovery using sonar grid map matching in a home environment", Robotics and Computer-Integrated Manufacturing, vol.28, no.3, pp.366-374.

Cited by

  1. Experimental Result on Map Expansion of Underwater Robot Using Acoustic Range Sonar vol.13, pp.2, 2018, https://doi.org/10.7746/jkros.2018.13.2.079
  2. 표준화된 지도 데이터 표현방법을 이용한 위상지도와 격자지도의 병합 vol.9, pp.2, 2013, https://doi.org/10.7746/jkros.2014.9.2.104
  3. COAG 특징과 센서 데이터 형상 기반의 후보지 선정을 이용한 위치추정 정확도 향상 vol.9, pp.2, 2013, https://doi.org/10.7746/jkros.2014.9.2.117