• Title/Summary/Keyword: Manure application

Search Result 539, Processing Time 0.032 seconds

Nutrient Balance and Vegetable Crop Production as Affected by Different Sources of Organic Fertilizers (유기자원에 따른 양분수지 및 작물생산)

  • Agus, Fahmuddin;Setyorini, Diah;Hartatik, Wiwik;Lee, Sang-Min;Sung, Jwa-Kyung;Shin, Jae-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.1
    • /
    • pp.1-13
    • /
    • 2009
  • Understanding the net nutrient balance in a farming system is crucial in assessing the system's sustainability. We quantified N, P and K balances under vegetable organic farming in a Eutric Haplud and in West Java, Indonesia in five planting seasons from 2005 to 2007. The ten treatments and three replications, arranged in a completely randomized block design, included single or combined sources of organic fertilizers: barnyard manure, compos ts or green manures. The organic matter rates were adjusted every planting season depending on the previous crop responses. The result sshowed that the application of ${\geq}20$ t $ha^{-1}$ barnyard manure per crop resulted in positive balances of N, P, and K, except in the second crops of 2006 where potassium balance were -25 to -11 kg $ha^{-1}$ under the treatments involving cattle barnyard manure, because of low K content of these treatments and high K uptake by Chinese cabbage. Application of 20 to 25 t $ha^{-1}$ of plant residue or 5 t $ha^{-1}$ of Tithonia compost also resulted in a negative K balance. Soil available P increased significantly under ${\geq}25$ t $ha^{-1}$ barnyard manure and that under chicken manure had the highest available P. Accordingly, chicken barnyard manure gave the highest crop yield because of relatively higher N, P, and K contents. Plant residues gave the lowest yield due to the lowest nutrient content among all sources. Reducing the use of barnyard manure to 12.5 t $ha^{-1}$ and substituting it with Tithonia compost, Tithonia green manure or vegetable plant residue compost gave insignificantly different yield compared to the application of 25 t $ha^{-1}$ barnyard manure singly. In the long run, application of 25 t ha-1 cattle, goat, and horse manure or about 20 t $ha^{-1}$ chicken manure is recommendable for sustaining the fertility of this Andisol for vegetable production.

Effect of Slurry Composting Biofiltration (SCB) Liquid Manure on Shoot Growth and Fruit Qualities of Peach (Prunus persica L.) and Soil Chemical Properties in Orchard

  • Park, Jin Myeon;Lee, Seong Eun;Lim, Tae Jun;Noh, Jae Seung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.530-535
    • /
    • 2013
  • This study was carried out to investigate the effect of slurry composting and biofiltration (SCB) liquid manure application on shoot growth, fruit qualities and soil chemical properties in peach orchard. SCB liquid manure was fertigated ten times from April to October in SCB plot, whereas chemical fertilizer was treated two times as basal and additional fertilizers in control plot. The shoot growth, leaf nitrogen and potassium content, soil exchangeable K, fruit weight and yield were higher in SCB plot than in control. Soluble solid content and acidity, soil organic matter, soil available phosphate and soil exchangeable Mg showed no significant difference between treatments, and the leaf calcium and magnesium content were lower in SCB plot than in control. In conclusion, fertigating SCB liquid manure in peach orchard has positive effects on fruit weight and yield, and it is suggested that periodical soil testing is needed because of the possibility of K accumulation in SCB liquid manure treated soil when the orchard is fertigated based on the soil nitrogen content.

Evaluation of Ammonia Emission Following Application Techniques of Pig Manure Compost in Upland Soil (밭 토양에서 돈분 퇴비 시용방법에 따른 암모니아 휘산량 평가)

  • Yun, Hong-Bae;Lee, Youn;Lee, Sang-Min;Kim, Suk-Chul;Lee, Yong-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.1
    • /
    • pp.15-19
    • /
    • 2009
  • Ammonia in atmosphere has a negative effect on the natural ecosystems, such as soil acidification and eutrophication, by wet and dry deposition. Livestock manure, compost, and fertilizer applications to arable land have been recognised as a major source of atmospheric ammonia emissions. The objective of this study was to evaluate the efficiency of compost application techniques in reducing ammonia loss in upland soil. The reductions in ammonia emission were 70 and 15% for immediate rotary after application (IRA) and rotary at 3 day after application (RA-3d) in comparison with surface application (SA). Total ammonia emissions for 13 days, expressed as % ammonia-N applied with compost, were 42, 35.7, and 12.7% for SA, RA-3d, and IRA treatments, respectively. The ammonia emission rate fell rapidly 6 h after application and 61 % of total ammonia emission occurred within the first 24 h following surface application. The lime application along with compost significantly enhanced the total ammonia emission. Total ammonia emission for 22 days were 40.1, 31.4, and 27.7 kg/ha for immediate incorporation in soil after lime and compost application, lime incorporation in soil following 3 days after compost surface application, and compost incorporation in soil following 3 days after lime surface application, respectively. Therefore, lime and livestock manure compost application at the same time was not recommended for abatement of ammonia emission in upland soil.

Effects of Green Manure and Carbonized Rice Husk on Soil Properties and Rice Growth (녹비작물 혼파 이용 벼 재배 시 왕겨숯 처리가 벼 생육 및 토양 특성에 미치는 영향)

  • Jeon, Weon-Tai;Seong, Ki-Yeong;Lee, Jong-Ki;Oh, In-Seok;Lee, Young-Han;Ok, Yong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.484-489
    • /
    • 2010
  • The cultivation of green manure crops plays an important role in soil quality and sustainability of agricultural system. However, the incorporation of green manure crops may be of concern because it can lead to strongly reducing conditions in the submerged soil. This study was conducted to evaluate the effects of rice husk carbon on rice (Oryza sativa L.) cultivation using green manure mixtures (hairy vetch + rye) in rice paddy. Field experiments were conducted in rice paddy soil (Shinheung series, fine loamy, mixed, nonacid, mesic family of Aeric Fluventic Haplaquepts) at the National Institute of Crop Science (NICS), Korea from October 2007 to October 2008. The experiments consisted of three treatments: application or no application of carbonized rice husk, and conventional fertilization. These treatments were subdivided into whole incorporation and aboveground removal of green manure mixtures. The redox potential (Eh) was higher upon application of the carbonized rice husk when compared to no application at 8 and 37 days after transplanting (DAT). The ammonium-N ($NH_4$-N) in soil was highest upon the application of carbonized rice husk + whole green manure incorporation at 17 and 49 DAT. Plant height and tiller number of rice were similar to the $NH_4$-N concentration in soil. Rice yields of application and no application of carbonized rice husk treatment were not significant. However, application of carbonized rice husk improved the soil physical properties such as bulk density and porosity after rice harvest. Therefore, the results of this study suggest that carbonized rice husk could be used as soil amendment for environmentally-friendly rice production under a green manure mixture-rice cropping system.

STRATEGIES TO REDUCE ENVIRONMENTAL POLLUTION FROM ANIMAL MANURE: PRINCIPLES AND NUTRITIONAL MANAGEMENT - A REVIEW -

  • Paik, I.K.;Blair, Robert;Jacob, Jacqueline
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.6
    • /
    • pp.615-635
    • /
    • 1996
  • The animal industry must be environmentally sound to ensure its long-term sustainable growth. Livestock wastes mostly manure, can be a valuable resource as well as a potential hazard to environment. The first option of manure management is developing an 'environmentally sound' feeding program and feeds so there are less excreted nutrients that need to be managed. Once the manure is produced it can be best utilized as a fertilizer of a soil conditioner. In many countries the amount of manure that can be spread on land depends on the nutrient requirements of the crop being grown. The laws specify maximum application rates and not animal stocking rates. Farmer who reduce the N and P component of manure can release pressure on the environment without having to reduce the number of animals. There are alternative system for housing and manure treatment which generate manure that are easier to handle and have less pollutants or more economic value. Treated animal waste may also be used as a feedstuff or fuel source. Most of the options of waste management result in increased costs to implement. It is necessary to assess the economics in order to find an acceptable compromise between the increased costs and the benefit to the environment. Animal welfare is also becoming more and more of an issue and it will lead to systems where animals are kept in less confined environment. The new system will have a great impact in the waste management system in the future.

Anaerobic Biotreatment of Animal Manure - A review of current knowledge and direction for future research -

  • Hong, Jihyung
    • Journal of Animal Environmental Science
    • /
    • v.11 no.2
    • /
    • pp.97-102
    • /
    • 2005
  • Anaerobic decomposition is one of the most common processes in nature and has been extensively used in waste and wastewater treatment for several centuries. New applications and system modifications continue to be adapted making the process either more effective, less expensive, or suited to the particular waste in question and the operation to which it is to be applied. Animal manure is a highly biodegradable organic material and will naturally undergo anaerobic fermentation, resulting in release of noxious odors, such as in manure storage pits. Depending on the presence or absence of oxygen in the manure, biological treatment process may be either aerobic or anaerobic. Under anaerobic conditions, bacteria carry on fermentative metabolisms to break down the complex organic substances into simpler organic acids and then convert them to ultimately formed methane and carbon dioxide. Anaerobic biological systems for animal manure treatment include anaerobic lagoons and anaerobic digesters. Methane and carbon dioxide are the principal end products of controlled anaerobic digestion. These two gases are collectively called biogas. The biogas contains $60\~70\%$ methane and can be used directly as a fuel for heating or electrical power generation. Trace amounts of ammonia and hydrogen sulfide ($100\~300\;ppm$) are always present in the biogas stream. Anaerobic lagoons have found widespread application in the treatment of animal manure because of their low initial costs, ease of operation and convenience of loading by gravity flow from the animal buildings. The main disadvantage is the release of odors from the open surfaces of the lagoons, especially during the spring warm-up or if the lagoons are overloaded. However, if the lagoons are covered and gases are collected, the odor problems can be solved and the methane collected can be used as a fuel. Anaerobic digesters are air-tight, enclosed vessels and are used to digest manure in a well-controlled environment, thus resulting in higher digestion rates and smaller space requirements than anaerobic lagoons. Anaerobic digesters are usually heated and mixed to maximize treatment efficiency and biogas production. The objective of this work was to review a current anaerobic biological treatment of animal manure for effective new technologies in the future.

  • PDF

Characteristics of Ash (Coal, Wood and Rice Hull) and Its Potential Use as an Additive in Poultry Manure for Protecting the Environment (재(석탄, 목재, 왕겨재)의 특성과 환경보호를 위하여 계분의 첨가 가능성에 관한 연구)

  • Nahm K.H.
    • Korean Journal of Poultry Science
    • /
    • v.33 no.1
    • /
    • pp.65-80
    • /
    • 2006
  • Ash amendment to manure holds potential as a method to neutralize manure for reducing odor and reduce phosphorus (P) solubility in runoff from fields where manure has been applied. This review focuses on the literature published about ash characteristics and their environmental uses. There is no uniform physico-chemical definition of the selected ashes (coal fly ash-CFA, wood ash-WA, and rice hull ash-RHA) used in various studies. These ashes vary greatly in their acidity (pH<6.0) or alkalinity (pH>12.5) based on the conditions at which they were farmed and the composition of the ash source. CFA amendment to manure reduced manure-P solubility and application of CFA amended manure to agricultural soils is a method to improve water quality WA may prove to be a valuable manure odor control amendment since WA contains a high level of carbon. A major biomass source is rice hull (husk) which provides an ash source (RHA). The .ice hull and RHA are sources of silica, compromising about 20% and 60%, respectively. So far research has been directed at the use of CFA, WA and RHA as soil amendments, but there is potential use of these materials as manure additives to sequester P and reduce odors.

Evaluation on Soil Characterization in Paddy Treated with Different Green Manure Crops and Tillage Method by Ordination Technique

  • Kim, Kwang Seop;Park, Ki Do;Kim, Suk-Jin;Choi, Jong-Seo;Lee, Yong Bok;Kim, Min-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.4
    • /
    • pp.285-294
    • /
    • 2015
  • Ordination has been recognized useful method to analyze the effects of multiple environmental factors on dozens of species in vegetation ecology because of summarizing community data by producing a low-dimensional graphics. Main objective of this study was the application of ordination method, especially principal components analysis (PCA), to analyze the soil characterization on paddy treated by different green manure crops and tillage methods. Treatments included the three tillage treatments and two green manure crops as the following; (i) moldrotary + rotary tillage without green manure crop (Con), with (ii) hairy vetch (ConHv), and (iii) hairy vetch + green barely (ConHvGb), (iv) rotary tillage without green manure crop (Rot), with (v) hairy vetch (RotHv), and (vi) hairy vetch + green barly (RotHvGb), and (vii) no-tillage (Notill). Vectorial distance result from PCA of soil properties including physical, chemical, and microbial properties showed the two main difference. Firstly, soil properties among plots without green manure were strongly affected by tillage strength [Vectorial distance: Con-Notil (5.88) > Rot-Notill (4.58)] at PC1 (35.0%) axis. But it was difficult to find the fixed trend among plots when green manure crop was added in plot. Nevertheless, two groups were separated by adding green manure crop at PC2 (29.2%) axis. These results show that PCA ordination methods could be used the research for change of soil characterization.

Estimation on ability of livestock manure digestion for upland crops (밭작물별 가축분 소화능 계량화 평가)

  • Hyun, Byung-Keun;Yun, Hong-Bae;Kwon, Soon-Ik;Jung, Kwang-Yong;Koh, Mun-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.3
    • /
    • pp.165-172
    • /
    • 2001
  • Owing to raising number of livestock, we have a problem to solve disposal of livestock manure. We know that soil have the digestion ability of livestock manure as one of multifunctionality. I carried out to investigate of livestock manure digestion (especially pig and chicken manure) that is considered as nitrogen fertilizer in upland crops. The results were summarized as follows: 1. The amount of pig manure was(1999) 4,592,375 tons/year, and chicken manure was 4,488,166 tons/year and equivalent to 41,912 tons N/year and 76,223 tons N/year, respectively. 2. The definition of the digestion ability of livestock manure is as the maximum application amount of livestock manure without injuring soil and plant. And the calculation model of digestion ability of livestock manure(ALMD) is follows: ALMD = amount of nitrogen requirement per each upland crop / {(total nitrogen contents in livestock manure) ${\times}$ (nitrogen fertilizer efficiency of livestock manure)} 3. The amount of ability of pig and chicken manure for upland crops (dry based) were 1,142.9kg/10a and 540.1kg/10a, respectively. 4. The order of amount of digestion ability of livestock manure on upland were vegetables > orchards > miscellaneous grains(corn) > barley > potatoes > pulses > oil seeds & special crops ) fodder crops) mulberry.

  • PDF

The Effects of Organic Manure and Chemical Fertilizer Application Levels on the Growth and Nutrient Concentrations of Yellow Poplar (Liriodendron tulipifera Lin.) Seedlings (유기질 및 화학비료 처리수준이 어린 백합나무 생장 및 양분농도에 미치는 영향)

  • Han, Si Ho;An, Ji Young;Choi, Hyung-Soon;Cho, Min Seok;Park, Byung Bae
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.5
    • /
    • pp.37-48
    • /
    • 2015
  • Soil nutrient management is important to maintain the constant productivity of seedling production in the nursery for successful forest restoration. This study investigated the effects of organic manure and chemical fertilizer application levels on the growth, soil properties, and nutrient concentrations of yellow poplar seedlings. One-year-old yellow poplar seedlings were treated with the combination of 3 level organic manures(0, 5 Mg/ha, 10 Mg/ha; mixture of poultry manure, cattle manure, swine manure, and sawdust) and 3 level nitrogen-phosphorus-potassium(NPK) chemical fertilizers(0, 1x(urea, $30g/m^2$; fused superphosphate, $70g/m^2$; potassium chloride, $15g/m^2$), 2x). Organic manure significantly increased the soil pH and the concentrations of nitrogen, available phosphorous, exchangeable potassium, calcium, and magnesium. In contrast, the NPK chemical fertilizer decreased the soil pH and exchangeable calcium concentration, did not affect the soil concentrations of nitrogen and magnesium, and increased the concentrations of available phosphorous and exchangeable potassium. Both organic manure and NPK chemical fertilizer treatments increased the seedling height, root collar diameter, and dry weight by 39% and 25%, respectively. The treatment with manure 5 Mg/ha and NPK 2x chemical fertilizer mostly increased seedling dry weight by 2.6 times more than that of the control. Compared to the effects of the fertilization treatments on the soil properties, the effects on nutrient concentrations in the leaves were relatively small. These findings indicate that organic manure that was derived from livestock byproducts and sawdust can be utilized with chemical fertilizer to improve seedling production as well as conserving soil quality.