• Title/Summary/Keyword: Manufacturing techniques

Search Result 1,066, Processing Time 0.027 seconds

Study on Manufacturing Techniques of Bracket Mural Paintings of Daeungbojeon Hall in Naesosa Temple (내소사 대웅보전 포벽화 제작기법 연구)

  • Lee, Hwa Soo;Lee, Na Ra;Han, Gyu-Seong
    • Journal of Conservation Science
    • /
    • v.34 no.6
    • /
    • pp.557-568
    • /
    • 2018
  • The manufacturing techniques were studied by investigating a precise analysis on wall structure, features of materials and the painting layer of the bracket mural paintings at Daeungbojeon Hall in Naesosa temple. The wall frame is a single-branch structure, and The mural paintings are composed of 3 layers which are a support layer, a finishing layer and a painting layer. The support layer and the finishing layer are an earth wall that sand and clay such as Quartz, Feldspar, and etc. are mixed. The support and the finishing layers have a combination of medium particle sand and smaller than fine particle sand in the approximate ratios of 0.8:9.2 and 6:4, respectively. Therefore, the aforementioned ratio of sand with medium or large particles is relatively higher in the finishing layer than the support layer. As a result of a precise analysis on the painting layer, it has a relatively thick ground layer for painting which is maximum $456.15{\mu}m$ by using Celadonite or Glauconite and the paintings were colored by using pigments such as Atacamite, Kaolinite or Halloysite, Oxidized steel, and etc. on it. The manufacturing style and the painting techniques of an earth wall are included in the category of the Joseon Dynasty style that have been studied up to now, but the facts that the finishing layer has a high content of sand and a middle layer and chopped straw have not been identified. These are remarkable points in terms of structure and materials, and can be crucial in the evaluation of the state of conservation of mural paintings or preparation of a conservation plan.

A Study on Manufacturing Techniques and Expected Effects for SR001 (SR001 제작기법 및 기대효과에 관한 연구)

  • Lee, Duk-Gyu;Shin, Kun-Young;Kim, Il-Hwan;Seo, Seog-Chul;Park, Jong-Hun;Kim, Ki-Chun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2987-2997
    • /
    • 2011
  • As a public transit playing an important role in the era of high gas prices, subway corresponds the national strategy 'Low carbon, Green growth'; accordingly, passengers who would use the transportation are steadily increasing. Subway operators are required to provide subway users with services based on higher-quality system, safety, convenience & high reliability level. Furthermore, as the legally allowed maximum life time of EMUs is extended, it is necessary to localize & standardize the parts of EMUs. This paper presents a modelling of systematic EMU(SR001) manufacturing technique which enables us to reflect passenger and subway operator's demands in the whole EMU manufacturing process from the initial design phase to its completion by making full use of the know-how based on subway operators' experiences. SR001 enabled SMRT's staffs to participate in the EMU design & its equipment manufacturing; consequently, it realized the innovative system which meets passengers' requirements. Moreover, the process lead time was reduced dramatically. The result of this research will be helpful in providing useful guidelines for railway industry policy and development making in Korea.

  • PDF

Development of Diaphragm-type Stylus Probe for Ultra-precision On-machine Measurement Application (초정밀 기상측정용 다이아프램 타입 접촉식 프로브의 개발)

  • Lee, Jung-Hoon;Lee, Chan-Hee;Choi, Joon-Myeong;Kim, Ho-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.845-852
    • /
    • 2012
  • The diaphragm-type stylus probe was developed for ultra-precision on-machine measurement (OMM) application. This probe is equipped with two diaphragms which are parallel and one capacitive sensor is used for detecting the vertical motion of end tip in the stylus when it is contacted to the optical freeform surface. For better performance of proposed probes, several design parameters such as axial stiffness and the lateral deformations were investigated with finite element analysis techniques. To verify the feasibility, the profiles of the master sphere ball were measured on the ultra-precision milling machine. The measurement results show that the proposed probe can calculate the radius of the circle within the accuracy of 0.1 ${\mu}m$ for the ultraprecision optical surface.

Quality Management in a Manufacturing Environment using a 3D Printer (3D 프린터를 이용한 제조 환경에서의 품질경영)

  • Son, Eun-Il;Song, Hae-Keun;Lim, Sung-Uk
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.2
    • /
    • pp.145-152
    • /
    • 2014
  • Purpose: As the number of people directly employed in making things declines, the cost of labour as a proportion of the cost of production and delivery will diminish too. This will make to move the focus of quality management because new manufacturing techniques make it cheaper and faster to respond to changing local tastes Methods: This discussion is induced by understanding that change the point of view of quality. Results: Mark-processing method using a mold of 3D-printer is different from traditional manufacturing methods. Design, rapid prototyping of products produced by the right way, many changes in many industries will be created. Therefore, the design will be more emphasis on the importance of quality. Conclusion: As manufacturing goes digital, a Quality great change is now gathering pace. It will allow things to be made economically in much smaller numbers, more flexibly and with a much lower input of labour, thanks to new materials, completely new processes such as 3D printing. So we must change the vantage point of quality, from process to Design, R&D, and Delivery.

Finite Element Analysis for Fracture Criterion of PolyJet Materials (PolyJet 적층재료의 파괴기준 설정을 위한 유한요소해석)

  • Kim, Dong Bum;Lee, Geun Tae;Lee, In Hwan;Cho, Hae Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.134-139
    • /
    • 2015
  • PolyJet technology is an additive manufacturing (AM) technology commonly used for modeling, prototyping, and production applications. It is one of the techniques used for 3D printing. The PolyJet technique is a process that joins materials to fabricate a product from 3D CAD data in a layer-by-layer manner. The orientation of a layer can affect the mechanical properties of the product manufactured by the PolyJet technique because of its anisotropy. In this paper, tensile and shearing tests of specimens were developed with the PolyJet technique in order to study the mechanical properties according to the orientation of a layer. The mechanical properties of the specimens were determined on the basis of true stress-strain curves from tensile and shearing tests. In addition, the tensile and shearing tests were simulated under the same conditions as those of experiment, and the experiment and simulated results were compared. Through this study, the fracture criteria could be established.

Current Status of Biomedical Applications using 3D Printing Technology (3D프린팅 활용 생체의료분야 기술동향)

  • Park, Suk-Hee;Park, Jean Ho;Lee, Hye Jin;Lee, Nak Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1067-1076
    • /
    • 2014
  • To date, biomedical application of three-dimensional (3D) printing technology remains one of the most important research topics and business targets. A wide range of approaches have been attempted using various 3D printing systems with general materials and specific biomaterials. In this review, we provide a brief overview of the biomedical applications using 3D printing techniques, such as surgical tool, medical device, prosthesis, and tissue engineering scaffold. Compared to the other applications of 3D printed products, the scaffold fabrication should be performed with careful selection of bio-functional materials. In particular, we describe how the biomaterials can be processed into 3D printed scaffold and applied to tissue engineering area.

A Study of Efficient Method of 3D JIG Kinematic Modeling for Automobile Process Simulation (자동차 공정 시뮬레이션의 3D 지그 키네마틱 정보 모델링을 위한 효율적 방법 연구)

  • Ko, Min-Suk;Kwak, Jong-Geun;Jo, Hee-Won;Park, Chang-Mok;Wang, Gi-Nam;Park, Sang-Cheul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.6
    • /
    • pp.415-423
    • /
    • 2009
  • Because of the fast changing car design and increasing facilities, manufacturing process of cars is getting more complex now a days. Particularly, car manufacturing system that consist of automated devices, applies various simulation techniques to validate device motion and detect collision. To cope with this problem, traditional manufacturing system deployed test-run with the real devices. However, increased computing power in a contemporary manufacturing system changes it into realistic 3D simulation environment. Similarly, managed device data that was generated using 2D traditionally, can be converted to 3D realistic simulation. The existing problem with 3D simulation is disjoint data interaction between different work stations. Consequently, JIGs, fixing the car part accurately, are changed according to fixing position on the part or a part shape properties. In practice, the 3D JIG data has to be managed according to kinematic information, but not of its features. However, generating kinematic information to the 3D model repeatedly according to frequent change in part is not explained in current literatures. To fill this knowledge gap, this paper suggests an improving method of rendering 3D JIG kinematics information to simulation model. Thereafter, it shows the result of implementation.

Development of Preventive Management Manual for Non-Manufacturing Industries (비제조업종의 근골격계질환 예방관리 매뉴얼 개발)

  • Kim, Chol-Hong;Moon, Myung-Kug;Kim, Day-Sung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.29-36
    • /
    • 2009
  • A Study was conducted to investigate the type and level of occupational risk factors for the onset of work-related musculoskeletal disorders (WMSDs) in non-manufacturing industries. Total of 38 worksites were investigated from 5 different business areas such as financial institution, transportation service, building maintenance, sanitary service and educational service. Major job and task category were classified and corresponding occupational risk factors such as awkward posture, force exertion, repetitiveness of job, and work/rest cycle were examined using various ergonomic risk analysis techniques. Sets of matrices were developed including types and levels of risk factors for the classified jobs and tasks from 5 different non-manufacturing industries. Also possible ergonomic remedies were suggested for the improvement working conditions. Results and risk factor matrices can be applied as a guideline for the investigation of WMSDs risk factors in similar industries for the prevention of WMSDs.

Laser Processing Technology using Metal Powders (금속분말의 레이저 공정 기술)

  • Jang, Jeong-Hwan;Moon, Young-Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.3
    • /
    • pp.191-200
    • /
    • 2012
  • The purpose of this paper is to review the state of laser processing technology using metal powders. In recent years, a series of research and development efforts have been undertaken worldwide to develop laser processing technologies to fabricate metal-based parts. Layered manufacturing by the laser melting process is gaining ground for use in manufacturing rapid prototypes (RP), tools (RT) and functional end products. Selective laser sintering / melting (SLS/SLM) is one of the most rapidly growing rapid prototyping techniques. This is mainly due to the processes's suitability for almost any materials, including polymers, metals, ceramics and many types of composites. The interaction between the laser beam and the powder material used in the laser melting process is one of the dominant phenomena defining feasibility and quality. In the case of SLS, the powder is not fully melted during laser scanning, therefore the SLS-processed parts are not fully dense and have relatively low strength. To overcome this disadvantage, SLM and laser cladding (LC) processes have been used to enable full melting of the powder. Further studies on the laser processing technology will be continued due to the many potential applications that the technology offers.

A study on the Method of Evaluating Analysis for Computer Integrated Manufacturing System (ERP시스템과의 통합을 위한 CIM시스템의 평가 분석방법에 관한 연구)

  • 김제홍
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.1
    • /
    • pp.147-153
    • /
    • 2002
  • A major problem in the adoption of advanced manufacturing systems such as C.I.M. (Computer Integrated Manufacturing) is the prerequisite economic justification Process because of high investment needed for the acquisition and installation of C.I.M. While some of the benefits expected are readily qualifiable, others are very difficult or even impossible, using conventional method. Thus the investment in C.I.M. should be considered as a strategic decision rather than a tactical decision which concerns with only financial implications. In this Paper we review papers on major justification techniques developed during the last decade and identify the benefits of C.I.M. and describe the considerations in the justification of C.I.M. Also we deal with the current and future research directions in justifying C.I.M.

  • PDF