• Title/Summary/Keyword: Manufacturing speed

Search Result 2,088, Processing Time 0.032 seconds

A Study on Surface Integrities of High Speed Grinding with CBN Wheel in Mold Material

  • Lee, Sang-Jin;Hwang, Yung-Mo;Kim, Young-Shik;Kwak, Jae-Seob;Ha, Man-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.2
    • /
    • pp.5-13
    • /
    • 2003
  • In this study, experiments of high speed grinding had been earned out in a STD11 specimen for evaluating the grindability with designed CBN grinding wheels Ground surfaces were analyzed and evaluated by means of surface Integrities and wheel damages. The surface roughness and 3 dimensional profile had been used for analyzing the micro-surface integrity. The residual stress of the ground surface had been measured by the x-ray diffraction method. Also, the surface state of the ground specimens and the grinding wheels were evaluated by a metallurgical microscope and SEM system after high speed grinding in order to choose the suitable machining conditions.

  • PDF

A Study on the Characteristics to working Condition of STD11 in Wire-Cut EDM (Wire-Cut EDM에서 가공조건에 따른 STD11의 가공특성에 관한 연구)

  • Lee, Hong-Gil;Kim, Won-Il;Lee, Yun-Kyung;Wang, Duk-Hyun;Kim, Jong-Up
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.3
    • /
    • pp.5-12
    • /
    • 2005
  • In wire discharge machining which is using STD 11 as die materials, the major factors of machining speed are discharge voltage, discharge current, and discharge time. All of the three factors give the effect. Increasing of the discharge pulse time gets groove width wider and it relatively increases surface roughness and clearance. If no load voltage is decreased, surface roughness is good but it decreases machining speed. If on time is increased, machining speed will get faster and clearance and offset value also get bigger.

  • PDF

A Study on the Micro Hole Drilling of Silicon (실리콘 미세구멍가공기술에 관한 연구)

  • Huh, Chan;Lee, Chang-Gyu;Chae, Seung-Su;Park, Se-Jin;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.1
    • /
    • pp.18-23
    • /
    • 2005
  • This paper reports experimental results on microdrilling process for silicon parts used in semiconductor equipments. An experimental system was developed consisting of a high speed precision machine, microscope system, and project profile instrument. The experimental results indicate that the amount of chipping at the entrance and exit of micro hole decreases as the spindle speed increases up to 18,000 rpm. At higher spindle speed, however, the amount of chipping increases rapidly. The amount of chipping and infeed rate show proportional relationship up to 20 m/min of infeed rate. Beyond that infeed rate, however, sudden increase in the amount of chipping has occurred.

  • PDF

A Study on Characteristics of Cutting by Cutting Conditions in Titanium Machining (티타늄 가공의 절삭조건에 따른 가공특성에 관한 연구)

  • Kim, Gee-Hah
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.84-89
    • /
    • 2013
  • Titanium used in industry has been widely applied for aerospace engine, structures and spacecraft exterior, etc. because the titanium is higher in strength compared to the steel and light in weight compared to the steel. This study is to investigate the effect of cutting depth and cutting time on the spindle speed and feed rate of vertical machining center as a parameter to find the rough cutting time and cutting depth in the medium speed cutting machining of the titanium alloy. It is found that the cutting machining heat are increased as the cutting depth, feed rate, cutting time and spindle speed are raised.

Automatic Turn-off Angle Control for High Speed SRM Drives

  • Nashed Maged N.F.;Ohyama Kazuhiro;Aso Kenichi;Fujii Hiroaki;Uehara Hitoshi
    • Journal of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.81-88
    • /
    • 2007
  • This paper presents a new approach to the automatic control of the turn-off angle used to excite the Switched Reluctance Motor (SRM) employed in electric vehicles (EV). The controller selects the turn-off angle that supports and improves the performance of the motor drive system. This control scheme consisting of classical current control and speed control depends on a lookup table to take the best result of the motor. The turn-on angle of the main switches of the inverter is fixed at $0^{\circ}C$ and the turn-off angle is variable depending on the reference speed. The motor, inverter and control system are modeled in Simulink to demonstrate the operation of the system.

The Prototypal Molds Making for Car Parts using High Speed Machining (고속가공을 이용한 자동차부품 시작 금형 가공)

  • 이종현;이동주;신보성;최두선;이응숙;이득우;김석원
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.355-360
    • /
    • 2000
  • Recently, to be satisfied the consumer's demand the life cycle and the lead time of product is to be shorted. So it is important to reduce the time and cost in manufacturing prototypal mold. These days, in order to reduce the lead time and cost high speed machining is highlighted. In the paper, using the high speed machining and aluminum-7075, the fundamental experiment is implemented in the change of cutting force, machining time, surface characteristic according to the tool path. And then the prototypal mold of the automatic knob is machined.

  • PDF

FEM Analysis of Blanking of Mild Steel Sheet at Various Punch Speeds (연강 판재의 속도에 따른 블랭킹의 유한요소해석)

  • Song, Shin-Hyung;Choi, Woo Chun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.458-461
    • /
    • 2016
  • In this study, a finite element analysis for high-speed blanking of mild steel is performed. A thermomechanically coupled simulation model of a blanking process was developed using ABAQUS/Explicit. Through a simulation of the high-speed blanking process of mild steel, the influence of the punch speed, tool edge radius, and work material thickness on the development of the plastic heat and punch load were studied. The results of the study revealed that a higher punch speed caused thermal softening of the work material and decreased the punch load. Decreasing tool edge radius could help reduce the punch load. In addition, the results of the study revealed that the thermal softening effect was more dominant in the blanking of a mild steel sheet with a greater thickness as compared to that in the blanking of a mild steel sheet with a lower thickness.

An Adaptive Extrusion Control Technique for Faster FDM 3D Printing of Lithophanes (투명조각자기의 고속 FDM 3D 프린팅을 위한 가변 압출 기법)

  • Jang, Seung-Ho;Hong, Jeong-Mo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.22 no.2
    • /
    • pp.190-201
    • /
    • 2017
  • This paper proposes how to solve a problem of FDM 3D printer's irregular output when changing volume of extrusion, adjusting movement speed of the printer's head and a way to fill new inner part. Existing slicers adjust directly to change the rotation speed of the stepper. In this method, the change of the extrusion area is delayed due to the gap between the stepper and the nozzle, so that precise control is difficult. We control the extrusion area adjusting the moving speed of the print head and making constantly the rotation speed of the stepper. Thus, the output time can be shortened by generating an efficient path having a short travel distance. For evaluation, we applied our method to lithophanes with detailed variation. Comparing existing methods, our method reduced output time at least 30%.

Assemblability Analysis of the Kinematic Configurations of Ravigneaux-Type Automatic Transmissions (라비뇨 타입 자동변속기의 기구학적 구성에 대한 조립 가능성 분석에 관한 연구)

  • Kwon, Hyun Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.3
    • /
    • pp.49-58
    • /
    • 2019
  • Automatic transmissions are standard equipment in most automotive vehicles because they provide smooth speed shifting and a compact design with multiple speed ratios. Their structure consists mainly of planetary gear sets as power-transmitting devices and brakes and clutches as shifting devices. Several forward and one reverse speed ratios are achieved by actuating shifting devices to connect gears, input and output shafts, and the transmission case. In the development of a new transmission, kinematic configurations reflecting the transmission concept design are required, and the ability of the new concept design to be assembled without any interference among the connections must be demonstrated. In this study, an assemblability analysis of the kinematic configurations of a Ravigneaux-type automatic transmission was conducted with an assemblable example of an 8-speed Ravigneaux-type automatic transmission.

Variable Passive Compliance Device for Robotic Assembly (조립 로봇용 가변 수동 강성 장치의 설계)

  • Kim, Hwi Su;Park, Dong Il;Park, Chan Hun;Kim, Byung In;Do, Hyun Min;Choi, Tae Yong;Kim, Doo Hyung;Kyung, Jin Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.517-521
    • /
    • 2016
  • General industrial robots are difficult to use for precision assembly because they are operated based on position control. Their position accuracy is also usually higher than the assembly clearance (several tens of ${\mu}m$). In previous researches, force control was suggested as a robotic assembly solution. However, this method is difficult to apply in reality because of speed and cost problems. The RCC provides high speed, but applications are limited because the compliance is fixed, and it cannot detect an assembly condition during a task. A variable passive compliance device (VPCD) was developed herein. The VPCD can detect the assembly condition during tasks. This device can provide proper compliance for successful assembly tasks. The pneumatic system and the Stewart platform with an LVDT sensor were applied for measuring the displacement and variable compliance, respectively. The concept design and analysis were conducted to prove the effectiveness of the developed VPCD.