• Title/Summary/Keyword: Manufacturing machine

Search Result 4,223, Processing Time 0.027 seconds

A Study on Auto-Classification of Aviation Safety Data using NLP Algorithm (자연어처리 알고리즘을 이용한 위험기반 항공안전데이터 자동분류 방안 연구)

  • Sung-Hoon Yang;Young Choi;So-young Jung;Joo-hyun Ahn
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.528-535
    • /
    • 2022
  • Although the domestic aviation industry has made rapid progress with the development of aircraft manufacturing and transportation technologies, aviation safety accidents continue to occur. The supervisory agency classifies hazards and risks based on risk-based aviation safety data, identifies safety trends for each air transportation operator, and conducts pre-inspections to prevent event and accidents. However, the human classification of data described in natural language format results in different results depending on knowledge, experience, and propensity, and it takes a considerable amount of time to understand and classify the meaning of the content. Therefore, in this journal, the fine-tuned KoBERT model was machine-learned over 5,000 data to predict the classification value of new data, showing 79.2% accuracy. In addition, some of the same result prediction and failed data for similar events were errors caused by human.

A Study on the Injection Mold with Superhydrophobic Surface Properties Using Nanosecond Laser Machining (나노초 레이저 가공을 활용한 초소수 표면 특성을 가지는 사출 금형에 관한 연구)

  • Jung-Rae Park;Hye-Jin Kim;Ji-Young Park;Si-Myung Sung;Seo-Yeon Hong;Ki-Hyeok Song
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.48-54
    • /
    • 2023
  • In this study, an injection mold with ultra-small surface properties was manufactured using nanosecond laser processing. A superhydrophobic characteristic analysis was performed on the PET specimen manufactured through this. To this end, a hydrophobic pattern was defined using the Cassie-Baxter model. The defined features were selected with a spot diameter of 25um and pitch spacing of 30um and 35um. As a result of the basic experiment, it was confirmed that the fine pattern shape had an aspect ratio of 1:1 when the pitch interval was 35um and 20 iterations. Through the determined processing conditions, a hydrophobic pattern was implemented on the core surface of KP4. A specimen with a hydrophobic pattern was produced through injection molding. The height of the molded hydrophobic pattern is 20 ㎛ less than the depth of the core and the contact angle measurement results are 92.1°. This is a contact angle smaller than the superhydrophobic criterion. Molding analysis was performed to analyze the cause of this, and it was analyzed that the molding was not molded due to the lack of pressure in the injection machine.

Application of Virtual Studio Technology and Digital Human Monocular Motion Capture Technology -Based on <Beast Town> as an Example-

  • YuanZi Sang;KiHong Kim;JuneSok Lee;JiChu Tang;GaoHe Zhang;ZhengRan Liu;QianRu Liu;ShiJie Sun;YuTing Wang;KaiXing Wang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.106-123
    • /
    • 2024
  • This article takes the talk show "Beast Town" as an example to introduce the overall technical solution, technical difficulties and countermeasures for the combination of cartoon virtual characters and virtual studio technology, providing reference and experience for the multi-scenario application of digital humans. Compared with the live broadcast that combines reality and reality, we have further upgraded our virtual production technology and digital human-driven technology, adopted industry-leading real-time virtual production technology and monocular camera driving technology, and launched a virtual cartoon character talk show - "Beast Town" to achieve real Perfectly combined with virtuality, it further enhances program immersion and audio-visual experience, and expands infinite boundaries for virtual manufacturing. In the talk show, motion capture shooting technology is used for final picture synthesis. The virtual scene needs to present dynamic effects, and at the same time realize the driving of the digital human and the movement with the push, pull and pan of the overall picture. This puts forward very high requirements for multi-party data synchronization, real-time driving of digital people, and synthetic picture rendering. We focus on issues such as virtual and real data docking and monocular camera motion capture effects. We combine camera outward tracking, multi-scene picture perspective, multi-machine rendering and other solutions to effectively solve picture linkage and rendering quality problems in a deeply immersive space environment. , presenting users with visual effects of linkage between digital people and live guests.

Monitoring for Microbiological Quality of Rice Cakes Manufactured by Small-Scale Business in Korea (소규모 가공경영체 떡류의 생산과정에 따른 미생물학적 품질조사를 위한 모니터링)

  • Han, Sangha;Kim, Kyeongjun;Byun, Kye-Hwan;Kim, Duk-Hyun;Choi, Song-yi;Ha, Sang-do
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.5
    • /
    • pp.400-406
    • /
    • 2021
  • The purpose of this study was to evaluate the microbial contamination level of Korean traditional rice cakes (Garaetteok, Injeolmi, Gyeongdan), as well as manufacturing environment of small-sized businesses in Korea. The contamination levels of total aerobic bacteria, coliforms, and Bacillus cereus in raw materials were 3.76-4.48, 2.21-4.14, and 1.02-1.15 log CFU/g respectively. On the other hand, Escherichia coli was not found. It has been found that the contamination level of total aerobic bacteria, coliforms, and B. cereus in the raw material decreased after the washing process, but it increased again during the soaking and grinding process. However, after the steaming stage, the contamination level increased again during the molding and cooling process, suggesting the need to take cautions in managing cooling water and molded rice cakes in the process. These results suggest that the safe management of cooling water and taking cautions in the drying process after steaming of rice cakes are necessary for controlling cross-contamination. No E. coli was detected during the manufacturing process involving all tested rice cakes. The microbial contamination level of manufacturing environment such as rice grinder and rice cake forming machine was high. Therefore, in terms of food safety strategy, it is necessary to consider introducing systematic cleansing and disinfection procedure to processing equipment and environment for the sake of reducing microbiological risks.

Application Effects of Biochar Derived from Pruned Stems of Pear Tree on Growth of Crops and Soil Physico-chemical Properties (배 전정지 바이오차 시용이 작물 생육 및 토양이화학성에 미치는 영향)

  • Jang, Jae-Eun;Lim, Gab-June;Park, Jung-Soo;Shim, Jae-Man;Kang, Chang-Sung;Hong, Sun-Seong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.4
    • /
    • pp.11-19
    • /
    • 2018
  • This study was conducted to develop the manufacturing method of biochar using pruned stems of pear tree and its application effect on the crop growth and soil physico-chemical properties. In this study, biochar derived from pruned stems of pear tree at heating temperature of $300^{\circ}C$, $500^{\circ}C$ and $700^{\circ}C$ in heating times of 2, 3 and 4 hours, were tested in the changes of their chemical properties during biochar processing. The pH, Exch. K, Exch. Mg and cation exchange capacity (CEC) increased as the pyrolysis temperature increased during the production of biochar, and the change of these properties rapidly occurred at $500^{\circ}C$. However, as the pyrolysis temperature increased, ash content increased and total carbon (T-C), yield decreased. And the change of the properties in response to the heating time was not shown. It was thought that it would be desirable to set the production conditions of biochar at $500^{\circ}C$ for 2 hours in consideration of the change of chemical properties and the ash content and yield. And also, were conducted the experiments to establish manufacturing method of farm-made biochar using drum biochar manufacturing machine and investigate the application effects of biochar on the cultivation of chinese cabbage and tomato. Application of biochar derived from pruned stems of pear tree could enhance pH, organic matter (OM), total carbon (T-C) of soil. On the other hand, soil electrical conductivity (EC), NO3-N were lowered compared to the control which has no application. The bulk density, porosity and aggregate formation of soil were improved by biochar application. The fresh matter yields of chinese cabbage and tomato were significantly increased in proportion to the application rate of biochar. This study demonstrated the effect of the biochar derived from agricultural byproduct to be as a low cost potential soil ameliorant by physico-chemical properties in eco-friendly greenhouse cultivation.

Development of Mold for Coupling Parts for Drum Washing Machine (드럼세탁기용 커플링 부품 다이캐스팅 금형개발)

  • Park, Jong-Nam;Noh, Seung-Hee;Lee, Dong-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.482-489
    • /
    • 2020
  • This study conducted a prototype development and evaluation by performing die-casting mold design, mold manufacturing, and injection condition optimization based on flow and solidification analysis to meet the needs of the coupling parts produced by die casting. Through flow analysis, the injection conditions suitable for 100% filling in the cavity were found to be a molten metal temperature of 670 ℃, injection speed of 1.164 m/s, and filling pressure of 6.324~18.77 MPa. In addition, solidification close to 100 % occurred in all four cavities when the solidification rate was 69.47 %. A defect inspection on the surface and inside the product revealed defects, such as poor molding and pores. In addition, the dimensions of the injected product were within the target tolerance and showed good results. Through the feedback of the results of flow and solidification analysis, it was possible to optimize the mold design, and the injection optimization conditions were confirmed to be a total cycle time of approximately 6.5 seconds. Good quality carrier parts with an average surface hardness of approximately 45 mm from the gate measured at 97.48(Hv) could be produced.

Characteristics of organic pollutants in discharged industrial waste in Korea - Focuse on metallic and plastic manufacturing processes and wastewater treatment plants - (국내 사업장 폐기물 중 유기오염물질의 배출특성 연구 - 금속과 플라스틱 제조공정 및 폐수처리시설 중심으로 -)

  • Yeon, Jin-Mo;Kang, Young-Yeul;Kim, Woo-Il;Shin, Sun-Kyoung;Jeong, Seong-Kyeong;Cho, Yoon-A;Kim, Na;Kim, Min-Sun
    • Analytical Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.421-428
    • /
    • 2012
  • In this study, PCDD/PCDFs, PAHs and PCBs in wastes from metal, plastic and wastewater treatment facilities were analyzed. The concentrations of PCDD/PCDFs ranged from 7.37~432.20 ng-TEQ/kg in fly ash, 0.51~855.01 ng-TEQ/kg in incinerated ash and 0.37~385.81 ng-TEQ/kg in dust. Dioxin content was lower, compared to data in foreign countries. PAHs concentration was in the range of 0.0075~2.9225 mg/kg for process sludge and 0.0035~1.6716 mg/kg for wastewater sludge, which satisfied all of the two standards (Nap, Ant, B(a)F:4/0.8, Phen, B(a)A:5/1, Flt:10/2.5, B(a)P:4.5/0.9) of the Marine Environment Management Act. PAHs concentration in process sludge and wastewater sludge were slightly lower than those abroad. According to the analysis of seven types of PCBs (in comparison with the first standard, 0.15 mg/kg), concentration was found in the range of 0.0~0.65 mg/kg, while PCB-52, PCB-101, PCB-138, PCB-153 and PCB-180 isomers were detected in excessive value in some machine oil and hydraulic fluid.

Balancing assembly line in an electronics company

  • 박경철;강석훈;박성수;김완희
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1993.10a
    • /
    • pp.12-19
    • /
    • 1993
  • In general, the line balancing problem is defined as of finding an assignment of the given jobs to the workstations under the precedence constraints given to the set of jobs. Usually, the objective is either minimizing the cycle time under the given number of workstations or minimizing the number of workstations under the given cycle time. In this paper, we present a new type of an assembly line balancing problem which occurs in an electronics company manufacturing home appliances. The main difference of the problem compared to the general line balancing problem lies in the structure of the precedence given to the set of jobs. In the problem, the set of jobs is partitioned into two disjoint subjects. One is called the set of fixed jobs and the other, the set of floating jobs. The fixed jobs should be processed in the linear order and some pair of the jobs should not be assigned to the same workstations. Whereas, to each floating job, a set of ranges is given. The range is given in terms of two fixed jobs and it means that the floating job can be processed after the first job is processed and before the second job is processed. There can be more than one range associated to a floating job. We present a procedure to find an approximate solution to the problem. The procedure consists of two major parts. One is to find the assignment of the floating jobs under the given (feasible) assignment of the fixed jobs. The problem can be viewed as a constrained bin packing problem. The other is to find the assignment of the whole jobs under the given linear precedence on the set of the floating jobs. First problem is NP-hard and we devise a heuristic procedure to the problem based on the transportation problem and matching problem. The second problem can be solved in polynomial time by the shortest path method. The algorithm works in iterative manner. One step is composed of two phases. In the first phase, we solve the constrained bin packing problem. In the second phase, the shortest path problem is solved using the phase 1 result. The result of the phase 2 is used as an input to the phase 1 problem at the next step. We test the proposed algorithm on the set of real data found in the washing machine assembly line.

  • PDF

Identification of Motor Parameters and Improvement of Voltage Error for Improvement of Back-emf Estimation in Sensorless Control of Low Speed Operation (저속 센서리스 제어의 역기전력 추정 성능 향상을 위한 모터 파라미터 추정과 전압 오차의 개선)

  • Kim, Kyung-Hoon;Yun, Chul;Cho, Nae-Soo;Jang, Min-Ho;Kwon, Woo-Hyen
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.5
    • /
    • pp.635-643
    • /
    • 2018
  • This paper propose a method to identify the motor parameters and improve input voltage error which affect the low speed position error of the back-emf(back electromotive force) based sensorless algorithm and to secure the operation reliability and stability even in the case where the load fluctuation is severe and the start and low speed operation frequently occurs. In the model-based observer used in this paper, stator resistance, inductance, and input voltage are particularly influential factors on low speed performance. Stator resistance can cause resistance value fluctuation which may occur in mass production process, and fluctuation of resistance value due to heat generated during operation. The inductance is influenced by the fluctuation due to the manufacturing dispersion and at a low speed where the change of the current is severe. In order to find stator resistance and inductance which have different initial values and fluctuate during operation and have a large influence on sensorless performance at low speed, they are commonly measured through 2-point calculation method by 2-step align current injection. The effect of voltage error is minimized by offsetting the voltage error. In addition, when the command voltage is used, it is difficult to estimate the back-emf due to the relatively large distortion voltage due to the dead time and the voltage drop of the power device. In this paper, we propose a simple circuit and method to detect the voltage by measuring the PWM(Pulse Width Modulation) pulse width and compensate the voltage drop of the power device with the table, thereby minimizing the position error due to the exact estimation of the back-emf at low speed. The suitability of the proposed algorithm is verified through experiment.

Development of a flower support for real flower decoration Automatic Production System (생화 장식 꽃받침 자동 생산 시스템 개발)

  • Song, Myung-Seok;Kim, Man-Joong;Kim, Seon-Bong;Ji, Peng;Ryuh, Beom-Sahng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.63-71
    • /
    • 2018
  • A flower support was developed for real flower decoration automation production system using an ultrasonic wave sealer to automatically produce a system. Because a flower support for real flower decoration that was produced manually could not meet the needs of the consumers, this study developed an automated manufacturing system to increase productivity. A flower support for real flower decoration was constructed using a cap consisting of plastic and plate made from non-woven fabric. The guide was designed to transport the cap to the ultrasonic wave sealer and optimal guide was developed from the test according to the material and shape. To produce the entire system, the guides and accessories were weighed and appropriate motors and pulleys were calculated. Control of the automation production system was based on a PCB board, which increased the reliability and security, and a remote controller with manual and automatic modes was prepared. After development, tests of the transfer precision and repetition accuracy revealed an X-axis of 2.7mm, a Y-axis of 1 mm, and a repetition of 0 mm. The productivity was also checked. The automated machine worked 8 hours/day to make 35 supports and 70 Therefore, the automatic system produces 200% more output than manual work