• Title/Summary/Keyword: Manufacturing cement clinker

Search Result 31, Processing Time 0.023 seconds

The Utilization of Domestic Fly Ash as a Cement Raw Material (시멘트 원료로 국내산 석탄재의 이용 가능성)

  • Lee, Yoon-Cheol;Lee, Se-Yong;Min, Kyung-So;Lee, Chang-Hyun;Park, Tae-Gyun;Yoo, Dong-Woo
    • Korean Journal of Materials Research
    • /
    • v.32 no.1
    • /
    • pp.23-29
    • /
    • 2022
  • Fly ash is a by-product of coal fired electrical power plants and used as a material for cement and concrete; particularly, imported fly ash is mainly applied for cement production. Main objectives of this article are to replace domestic fly ash with an imported source. To verify the possibility of domestic fly ash as a material for cement from the aspect of chemical composition and physical properties, we manufactured various kinds of cement, such as using only natural raw material, shale, and partial replacement with domestic and imported fly ash. When we used the domestic and imported fly ash, there were no specific problems in terms of clinker synthesis or cement manufacturing in relation to the natural material, shale. In conclusion, domestic fly ash has been confirmed as an alternative raw material for cement because 7 days and 28 days compressive strength values were better than those of reference cement using natural raw material, on top of the process issue.

Optimal Abrasion Conditions for Separating Aggregate and Cement paste for Using Waste Concrete Fine Powder as Decarbonization Raw Material (폐콘크리트 미분말을 탈탄산 원료로 사용하기 위한 골재와 시멘트페이스트 분리의 최적 마쇄 조건 분석)

  • Ha-Seog Kim;Min-Chul Lee
    • Land and Housing Review
    • /
    • v.14 no.4
    • /
    • pp.121-129
    • /
    • 2023
  • In this study, we attempted to reduce CO2 generated during manufacturing by replacing limestone (CaCO3), a carbonate mineral used to produce cement clinker, with a decarbonated raw material to which CO2 is not bound. The raw material for decarbonization was cement paste attached to waste concrete, among various industrial by-products. Waste concrete has cement paste adhered to the aggregate, which cannot be separated efficiently by general crushing and grinding methods. Peeling and grinding methods effectively remove only the cement paste without damaging the original aggregate. The abrasion time, steel ball type, and steel ball ratio were selected as effective factors for Abrasion. An optimal abrasion experiment was conducted to produce waste concrete fine powder containing decarbonated CaO as a cement clinker raw material through an experimental design method. The experiment revealed that the optimal conditions for producing waste concrete fine powder were an abrasion time of 7 minutes, a steel ball size for pulverization of 8 mm, and a steel ball ratio for pulverization of 0.6.

Characteristics of Manufacturing for Special Cement Using High Chlorine by-product (고염소 부산물을 이용한 특수시멘트 제조 특성)

  • Moon, Kiyeon;Cho, Jinsang;Choi, Moonkwan;Cho, Kyehong
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.68-75
    • /
    • 2021
  • This study aims to investigate the manufacturing process of calcium chloride-based special cement, i.e., CCA (calcium chloro aluminate, C11A7·CaCl2), which uses limestone, by using one type of random industrial by-product, domestic coal ash, cement kiln dust. The manufacturing process of was examined in detail, and the results suggested that the amount of CCA synthesized increased with an increase in the firing temperature. The manufacturing process of CCA was investigated at 1200℃, which was determined as the optimum firing temperature. The results showed that in general, the amount of CCA synthesized tended to increase with an increase in the firing time; however, the clinker melted when the firing time was more than 30 min, thereby suggesting that a firing time of less than 20 min would be suitable for the clinkering process. The optimal firing conditions for manufacturing CCA were obtained as follows: heating rate of 10 ℃/min, firing temperature of 1200 ℃, and holding time of 20 min. The results also suggest that manufacturing CCA will be easier when high chlorine-containing cement kiln dust is used.

A Study on the Resource Recovery of Fe-Clinker generated in the Recycling Process of Electric Arc Furnace Dust (전기로 제강분진의 재활용과정에서 발생되는 Fe-Clinker의 자원화에 관한 연구)

  • Jae-hong Yoon;Chi-hyun Yoon;Hirofumi Sugimoto;Akio Honjo
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.50-59
    • /
    • 2023
  • The amount of dust generated during the dissolution of scrap in an electric arc furnace is approximately 1.5% of the scrap metal input, and it is primarily collected in a bag filter. Electric arc furnace dust primarily consists of zinc and ion. The processing of zinc starts with its conversion into pellet form by the addition of a carbon-based reducing agent(coke, anthracite) and limestone (C/S control). These pellets then undergo reduction, volatilization, and re-oxidation in rotary kiln or RHF reactor to recover crude zinc oxide (60%w/w). Next, iron is discharged from the electric arc furnace dust as a solid called Fe clinker (secondary by-product of the Fe-base). Several methods are then used to treat the Fe clinker, which vary depending on the country, including landfilling and recycling (e.g., subbase course material, aggregate for concrete, Fe-source for cement manufacturing). However, landfilling has several drawbacks, including environmental pollution due to leaching, high landfill costs, and wastage of iron resources. To improve Fe recovery in the clinker, we pulverized it into optimal -sized particles and employed specific gravity and magnetic force selection methods to isolate this metal. A carbon-based reducing agent and a binding material were added to the separated coarse powder (>10㎛) to prepare briquette clinker. A small amount (1-3%w/w) of the briquette clinker was charged with the scrap in an electric arc furnace to evaluate its feasibility as an additives (carbonaceous material, heat-generating material, and Fe source).

A Study on the Reduction of $CO_2$ Emission by the Application of Clean Technology in the Cement Industry (시멘트산업공정에서의 $CO_2$배출량 저감을 위한 청정기술 적용에 관한 연구)

  • Park, Young-G.;Kim, Jeong-In
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.182-190
    • /
    • 2010
  • The feasibility of clean technology to minimize the $CO_2$ emission by recycling and reuse the waste materials and energy have been studied for the cement industry. A life cycle assessment (LCA) was performed for an alternative raw material-supply method to use the molted slag as the major raw material in the cement clinker manufacturing. Using this new method, a 60% of $CO_2$ could be reduced that comes out during the decarboxylation from the cement rotary kiln. The energy-efficiency improvement and the alternative energy methods that had been determined in our previous study through the environmental assessment of cement industry were applied to the study for the reduction of $CO_2$ emission. The natural gas, one of the fossil fuels, was also used as the first choice to get the result at the earliest time by the most economic and the most efficient green technology and to switch into the carbon neutral energy consumption pattern.

Basic characteristic of non-sintered binder using by CFBC ash (순환유동층 보일러애시를 활용한 비소성 결합재 기초 특성)

  • Kang, Yong-Hak
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.225-226
    • /
    • 2017
  • Recently, there has been a growing interest in the development of non-sintered binder to reduce CO2 emissions from the cement clinker manufacturing process and a number of studies have been conducted on fly ashes as an industrial by-product. However, in order to utilize fly ashes as a non-sintered binder, it is necessary to solve problems such as safety issues and economical efficiency due to use of an alkali activator. This study evaluates the material properties and compressive strength characteristics of three types of circulating fluidized bed boiler ashes. As a result, it was confirmed that the characteristics of each binder vary depending on the location of the power plant and the types of raw materials. In addition, it has been confirmed that the fluidized bed boiler ash shows a high compressive strength and can be used sufficiently as an non-sintered binder.

  • PDF

Analysis of Carbonation Reduction Coefficient and CO2 uptakes under Finishing Materials (표면마감 조건에 따른 탄산화감소계수 및 CO2 흡수량 산정)

  • Song, Hun;Shin, Hyeon-UK;Chu, Yong-Sik;Lee, Jong-Kyu;Cho, Hyung-Kyu;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.215-216
    • /
    • 2012
  • Emissions of CO2 occur during the production of cement manufacturing process. During the production of clinker, limestone is mainly calcium carbonate, is heated to produce lime and CO2 as a by-product. It has a major problem, CO2 uptake is not considered in concrete carbonation, just focus in CO2 emission. This study is to develop a simulation model for CO2 uptakes in concrete structures based on carbonation reduction coefficient considering finishing materials. CO2 uptakes unit of concrete cubic meter is calculated by CO2 emissions unit of concrete materials and usage of concrete materials in mix proportion. From the simulation result, CO2 uptake ratios is 2.04 percent in carbonation models of concrete structure during 40 years.

  • PDF

Sustainable concrete mix design for a target strength and service life

  • Tapali, Julia G.;Demis, Sotiris;Papadakis, Vagelis G.
    • Computers and Concrete
    • /
    • v.12 no.6
    • /
    • pp.755-774
    • /
    • 2013
  • Considering the well known environmental issues of cement manufacturing (direct and indirect levels of $CO_2$ emissions), clinker replacement by supplementary cementing materials (SCM) can be a very promising first step in reducing considerably the associated emissions. However, such a reduction is possible up to a particular level of SCM utilization, influenced by the rate of its pozzolanic reaction. In this study a (4-step) structured methodology is proposed in order to be able to further adjust the concrete mix design of a particular SCM, in achieving additional reduction of the associated levels of $CO_2$ emissions and being at the same time accepted from a derived concrete strength and service life point of view. On this note, the aim of this study is twofold. To evaluate the environmental contribution of each concrete component and to provide the best possible mix design configuration, balanced between the principles of sustainability (low environmental cost) and durability (accepted concrete strength and service life ). It is shown that such a balance can be achieved, by utilising SCM by-products in the concrete mix, reducing in this way the fixed environmental emissions without compromising the long-term safety and durability of the structure.

Temperature Prediction and Control of Cement Preheater Using Alternative Fuels (대체연료를 사용하는 시멘트 예열실 온도 예측 제어)

  • Baasan-Ochir Baljinnyam;Yerim Lee;Boseon Yoo;Jaesik Choi
    • Resources Recycling
    • /
    • v.33 no.4
    • /
    • pp.3-14
    • /
    • 2024
  • The preheating and calcination processes in cement manufacturing, which are crucial for producing the cement intermediate product clinker, require a substantial quantity of fossil fuels to generate high-temperature thermal energy. However, owing to the ever-increasing severity of environmental pollution, considerable efforts are being made to reduce carbon emissions from fossil fuels in the cement industry. Several preliminary studies have focused on increasing the usage of alternative fuels like refuse-derived fuel (RDF). Alternative fuels offer several advantages, such as reduced carbon emissions, mitigated generation of nitrogen oxides, and incineration in preheaters and kilns instead of landfilling. However, owing to the diverse compositions of alternative fuels, estimating their calorific value is challenging. This makes it difficult to regulate the preheater stability, thereby limiting the usage of alternative fuels. Therefore, in this study, a model based on deep neural networks is developed to accurately predict the preheater temperature and propose optimal fuel input quantities using explainable artificial intelligence. Utilizing the proposed model in actual preheating process sites resulted in a 5% reduction in fossil fuel usage, 5%p increase in the substitution rate with alternative fuels, and 35% reduction in preheater temperature fluctuations.

Study on the Correlation between Air Emission Gas and Alternative Fuels Used in Cement Sintering Process (시멘트 소성공정에 사용된 대체연료와 대기배출가스간 상관관계 연구)

  • Choi, Jaewon;Baek, Ju-Ik;Kwon, Sang-Jin;Won, Pil-Sung;Kang, Bong-Hee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.286-293
    • /
    • 2020
  • In this study, we tried to verify the correlation of the amount of combustible industrial by-products, household waste used as fuels on cement sintering process and the amount of NOx, and CO, harmful components in the exhaust gas. The analysis uses coal as natural fuel, soft plastics (plastics with properties that tend to be scattered by wind, such as vinyls), hard plastics (plastics with properties that are not scattered by wind, such as PETs, wate rubbers), and reclaimed oils as alternative fuels. Utilizing the response surface analysis (RSM) technique using the process data of 2019, such as the fuel input and combustion temperature of a domestic A cement manufacturer's sintering facilities as independent variables, and the NOx, and CO emissions to the stack as dependent variables. Correlation was analyzed. As a result, it was confirmed that the impact on the emission material differs for each waste. In particular, it was analyzed that the hard plastics increase the CO emission but have an excellent effect of reducing NOx.