• Title/Summary/Keyword: Manufacturing Processes

Search Result 2,426, Processing Time 0.03 seconds

Establishment and Application of a Femtosecond-laser Two-photon-polymerization Additive-manufacturing System

  • Li, Shanggeng;Zhang, Shuai;Xie, Mengmeng;Li, Jing;Li, Ning;Yin, Qiang;He, Zhibing;Zhang, Lin
    • Current Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.381-391
    • /
    • 2022
  • Two-photon-polymerization additive-manufacturing systems feature high resolution and precision. However, there are few reports on specific methods and possible problems concerning the use of small lasers to independently build such platforms. In this paper, a femtosecond-laser two-photon-polymerization additive-manufacturing system containing an optical unit, control unit, monitoring unit, and testing unit is built using a miniature femtosecond laser, with a detailed building process and corresponding control software that is developed independently. This system has integrated functions of light-spot detection, interface searching, micro-/nanomanufacturing, and performance testing. In addition, possible problems in the processes of platform establishment, resin preparation, and actual polymerization for two-photon-polymerization additive manufacturing are explained specifically, and the causes of these problems analyzed. Moreover, the impacts of different power levels and scanning speeds on the degree of polymerization are compared, and the influence of the magnification of the object lens on the linewidth is analyzed in detail. A qualitative analysis model is established, and the concepts of the threshold broadening and focus narrowing effects are proposed, with their influences and cooperative relation discussed. Besides, a linear structure with micrometer accuracy is manufactured at the millimeter scale.

Analysis of the Effects of Process Variables and Alloy Composition on the Relative density and Mechanical Properties of 3D Printed Aluminum Alloys (적층제조된 알루미늄 합금의 공정변수 및 합금조성이 상대밀도와 기계적 특성에 미치는 영향도 분석)

  • Suwon Park;Jiyoon Yeo;Songyun Han;Hyunjoo Choi
    • Journal of Powder Materials
    • /
    • v.30 no.3
    • /
    • pp.223-232
    • /
    • 2023
  • Metal additive manufacturing (AM) has transformed conventional manufacturing processes by offering unprecedented opportunities for design innovation, reduced lead times, and cost-effective production. Aluminum alloy, a material used in metal 3D printing, is a representative lightweight structural material known for its high specific strength and corrosion resistance. Consequently, there is an increasing demand for 3D printed aluminum alloy components across industries, including aerospace, transportation, and consumer goods. To meet this demand, research on alloys and process conditions that satisfy the specific requirement of each industry is necessary. However, 3D printing processes exhibit different behaviors of alloy elements owing to rapid thermal dynamics, making it challenging to predict the microstructure and properties. In this study, we gathered published data on the relationship between alloy composition, processing conditions, and properties. Furthermore, we conducted a sensitivity analysis on the effects of the process variables on the density and hardness of aluminum alloys used in additive manufacturing.

CAD Based Robot Off-line Programming for Shoe Adhesive Application System (신발 접착제 도포 시스템을 위한 CAD 기반 로봇 오프라인 프로그래밍)

  • 윤중선;차동혁;김진영
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.7
    • /
    • pp.643-648
    • /
    • 2004
  • Most of shoes manufacturing processes are not yet automated, which puts restrictions on the increase of productivity. Among them, adhesive application processes particularly are holding the most workers and working hours. In addition, its working conditions are very poor due to the toxicity of adhesive agents. In case of automating adhesive application processes by using robots, the robot teaching by playback is difficult to produce high productivity because the kinds of shoes to be taught mount up to several thousands. Therefore, it is essential to generate the robot working paths automatically according to the kind, the size, and the right and left of shoes, and also to teach them to the robot automatically. This study deals with automated adhesive spraying to shoe outsoles and uppers by using a robot, and develops the program to generate three-dimensional robot working paths off-line based on CAD data. First, the three-dimensional data of an outsole outline or an upper profiling line are extracted from the two-dimensional CAD drawing file or the three-dimensional scanner. Next, based on the extracted data and the nozzle conditions for adhesive spraying, a robot working path is generated automatically. This research work is the core in automating adhesive spraying processes, and will do much for increasing productivity of shoes manufacturing.

Analysis of the Temperature Distribution at Micromachining Processes for Microaccelerometer Based on Tunneling Current Effect (턴널전류 효과를 이용한 미소가속도계의 마이크로머시닝 공정에서 온도분포 해석)

  • 김옥삼
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.105-111
    • /
    • 2000
  • Micronization of sensor is a trend of the silicon sensor development with regard to a piezoresistive silicon pressure sensor, the size of the pressure sensor diaphragm have become smaller year by year, and a microaccelerometer with a size less than 200~300${\mu}{\textrm}{m}$ has been realized. Over the past four or five years, numerical modeling of microsensors and microstructures has gradually been developed as a field of microelectromechanical system(MEMS) design process. In this paper, we study some of the micromachining processes of single crystal silicon(SCS) for the microaccelerometer, and their subsequent processes which might affect thermal and mechanical loads. The finite element method(FEM) has been a standard numerical modeling technique extensively utilized in structural engineering discipline for component design of microaccelerometer. Temperature rise sufficiently low at the suspended beams. Instead, larger temperature gradient can be seen at the bottom of paddle part. The center of paddle part becomes about 5~2$0^{\circ}C$ higher than the corner of paddle and suspended beam edges.

  • PDF

A Study on the Environment Conscious Machining Process Using Compressed Dry Cooling Air (건식 저온 압축 공기를 이용한 절삭유 대체형 가공 공정 방식에 관한 연구)

  • 강재훈;송준엽;박종권;노승국
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.129-132
    • /
    • 2003
  • Used cutting fluid from machining processes is harmful to both environment and human health. Chemical substances that provide the lubrication function in the machining process are toxtc to the environment if the cutting fluid is released to soil and water and caused serious health problems to workers who are exposed to the cutting fluid in both liquid and mist form. Recently. cost of using cutting fluid is increasing as the number and the extensiveness of environmental protection laws and regulations increase. Therefore, the use of cutting fluid in machining processes place an enormous burden on manufacturing companies to cover the additional costs associated with their use and protection of our environment. Current trends in manufacturing are focused on minimizing or eliminating the use of metalworking fluids in machining processes. And the increased costs for the disposal of waste products (swarf, coolants and lubricants), especially in industrially developed countries, has generated interest in dry machining. A variety of new techniques are testimony that new technology has rationalized further efforts to research and implement dry machining processes. This paper presents the developed equipment, the process optimization and the applications in the field of surface grinding for the new cryogenic dry machining using a compressed cooling air. The investigated new machining process method shows many advantages compared to conventional techniques with cutting fluid.

  • PDF

Application Estimate of 6 Degree of Freedom Industrial Robot for Multi-Axes Cutting Machine (다축 절삭가공용으로의 육관절 산업용 로봇의 적용평가)

  • Cheong, Seon-Hwan;Choi, Seong-Dae;Kweon, Hyun-Kyu;Choi, Eun-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.33-39
    • /
    • 2003
  • The stiffness of multi-articulated industrial robots is very weak, because their structure is an articulated type with some links and joints. Thus it is known that cutting processes for metals are not accepted in machine shop well, but they have a lot of merits for cutting processes, for example, drilling, tapping, and engraving etc, because of the characteristics of their high degree of freedom. The temptation of cutting aluminium was carried out to investigate the feasibility and the limitations or constraints for cutting metals on them. First the mode shapes of 6 degree of freedom welding robot were taken and analysed, and next the cutting processes were practically carried out on it. The results of study were found out to show the feasibility of cutting processes at drilling under 6mm of tool diameter, as well as to have some limitations and constraints, for examples, feed rate, depth of cut and cutting force etc.

  • PDF

The Web-Based Engineering Process Framework for Concurrent Engineering (동시공학 구현을 위한 Web 기반의 공학 프로세서 지원 프레임워크)

  • Kim, Hyun;Myong, Jae-Hyong;Mok, Kyung-Tae
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.283-292
    • /
    • 1998
  • The engineering process including design, analysis/evaluation and manufacturing activities is becoming one of the key issues to embody a concurrent engineering concept. This paper proposes a framework to integrated the complicated engineering design and manufacturing processes under the concurrent engineering environment. The framework offers the following facilities: (1) to represent the complicated engineering process (2) to coordinate design activities and execute the process in a distributed environment (3) to support a communication among the related engineers. The engineering processes is depicted using process flow graphs that consist in tasks and the corresponding input and output data. The engineering activities in the defined processes can be executed in a distributed environment through process controller of the framework. Engineers can communicate to suggest their opinions and to exchange product information in the framework. We have conformed the CORBA standard to integrate various distributed engineering the and communicate among them, and used a Java to support the platform independent environment on the Internet. Since the proposed framework an be a formal approach to integrate the engineering processes by providing formalism, parallelism, reusability, and flexibility, it can be effectively applied to embody the concurrent engineering concept in a distributed environment.

  • PDF

Ammonium uranate hydrate wet reconversion process for the production of nuclear-grade UO2 powder from uranyl nitrate hexahydrate solution

  • Byungkuk Lee ;Seungchul Yang;Dongyong Kwak ;Hyunkwang Jo ;Youngwoo Lee;Youngmoon Bae ;Jayhyung Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2206-2214
    • /
    • 2023
  • The existing wet reconversion processes for the recovery of scraps generated in manufacturing of nuclear fuel are complex and require several unit operation steps. In this study, it is attempted to simplify the recovery process of high-quality fuel-grade UO2 powder. A novel wet reconversion process for uranyl nitrate hexahydrate solution is suggested by using a newly developed pulsed fluidized bed reactor, and the resultant chemical characteristics are evaluated for the intermediate ammonium uranate hydrate product and subsequently converted UO2 powder, as well as the compliance with nuclear fuel specifications and advantages over existing wet processes. The UO2 powder obtained by the suggested process improved fuel pellet properties compared to those derived from the existing wet conversion processes. Powder performance tests revealed that the produced UO2 powder satisfies all specifications required for fuel pellets, including the sintered density, increase in re-sintered density, and grain size. Therefore, the processes described herein can aid realizing a simplified manufacturing process for nuclear-grade UO2 powders that can be used for nuclear power generation.

A Study on Monitoring Technology to Improve the Reliability of Etching Processes (식각공정의 신뢰성 향상을 위한 모니터링 기술에 관한 연구)

  • Kyongnam Kim
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.3
    • /
    • pp.208-213
    • /
    • 2024
  • With the development of industry, miniaturization and densification of semiconductor components are rapidly progressing. Particularly, as demand surges across various sectors, efficiency in productivity has emerged as a crucial issue in semiconductor component manufacturing. Maximizing semiconductor productivity requires real-time monitoring of semiconductor processes and continuous reflection of the results to stabilize processes. However, various unexpected variables and errors in judgment that occur during the process can cause significant losses in semiconductor productivity. Therefore, while the development of a reliable manufacturing system is important, the importance of developing sensor technology that can complement this and accurately monitor the process is also growing. In this study, conducted a basic research on the concept of diagnostic sensors for thickness based on the physical changes of thin films due to etching. It observed changes in resistance corresponding to variations in thin film thickness as etching processes progressed, and conducted research on the correlation between these physical changes and thickness variations. Furthermore, to assess the reliability of thin film thickness measurement sensors, it conducted multiple measurements and comparative analyses of physical changes in thin films according to various thicknesses.

Automated Production System for Manufacturing the Doctor Blades of Laser Printers (레이저프린터용 닥터 블레이드 생산 자동화)

  • Jun, Sung-Hoon;Lee, Eung-Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.633-638
    • /
    • 2012
  • The doctor blade is a core part of a laser printer and directly influences the printing quality. The main specifications for doctor blades ate for them to be precise and durable. It is necessary to study an automatic production system for doctor blades in order to obtain high-efficient manufacturing processes. In this paper, the technology and the design of the automatic production line has for manufacturing doctor blades has been researched. The automated manufacturing process consists of five steps, which are the supplying of raw material, shearing, bending, bracket supplying, and the laser-spot welding process. The proposed automatic manufacturing system allowed for faster and more reliable production of doctor blades.