• 제목/요약/키워드: Manufacturing Processes

검색결과 2,399건 처리시간 0.038초

광 부품 조립 시스템의 모델링과 성능평가 (Petri-Nets Modeling and Performance Evaluation of Optical-components Manufacturing System)

  • 김영호;김지한;정승권;배종일;이만형
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.491-495
    • /
    • 2002
  • In the paper, a Visual factory model for a optical-components manufacturing process is built. The optical-components manufacturing process is composed of 3 operation processes; optical sub assembly process, package assembly process, and fiber assembly process. Each process is managed not a batch mode, which is one of most popular manufacturing styles to produce a great deal of industrial output, but though a modular cell. In the processes, a modular cell has to be processed independently of the other cells. Optimization for the composition of assembly cell in the optical-components system is made by the Visual factory model.

  • PDF

Advanced PM Processes for Medical Technologies

  • Petzoldt, Frank;Friederici, Vera;Imgrund, Philipp;Aumund-Kopp, Claus
    • 한국분말재료학회지
    • /
    • 제21권1호
    • /
    • pp.1-6
    • /
    • 2014
  • Medical technologies are gaining in importance because of scientific and technical progress in medicine and the increasing average lifetime of people. This has opened up a huge market for medical devices, where complex-shaped metallic parts made from biocompatible materials are in great demand. Today many of these components are already being manufactured by powder metallurgy technologies. This includes mass production of standard products and also customized components. In this paper some aspects related to metal injection molding of Ti and its alloys as well as modifications of microstructure and surface finish were discussed. The process chain of additive manufacturing (AM) was described and the current state of the art of AM processes like Selective Laser Melting and electron beam melting for medical applications was presented.

절삭가공물의 생산 시간 추정 (Estimation of Manufacturing Time for Machined Parts)

  • 김강
    • 한국공작기계학회논문집
    • /
    • 제12권4호
    • /
    • pp.1-8
    • /
    • 2003
  • It is well known that design cost is only about 5% of final product cost but over 70% of it is determined during design stage. Earlier in the product design and development cycle the design changes occur, more economic they become. Therefore, it is recommended that the manufacturing time and cost of product are considered in steps involved in designing and manufacturing a product as early as possible. In this study, it is proposed a possible way that cm be available for estimating manufacturing time of parts, which are manufactured by conventional material removal processes (e.g. turning, milling and drilling). For it to be useful in the early design stage, the minimum number of informations on dimension shape, and design features of part will be used in this method.

주문생산에 필수적인 진보적 생산계획 시스템 (Advanced Planning System: A Prerequisite for Achieving Build-to-Order Environment)

  • 강윤식;이휘재;문광원;노성관;임헌욱
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.93-96
    • /
    • 2002
  • The manufacturing paradigm has shifted dramatically over the past decade from “push” or mass production mode to “pull” or customer-driven, order-based manufacturing mode, as multitudes of customers now demand mass customization of configurable products. As a means to achieve such rapidly responsive manufacturing system, Advanced Planning System (APS) has become an essential software tool for achieving modern “build-to-order” and “configure-to-order” manufacturing environment. APS enables manufacturers to respond to variety of customer demands In real time by instantly configuring manufacturing processes based on specifications described in each purchase orders and providing capable-to-promise information directly to customer by performing rapid “what-if” manufacturing simulated scenarios. This paper discusses the working of such system as well as the business processes that incorporate such systems to enable efficient “build-to-order” environment.

  • PDF

Powder Bed Fusion 방식 금속 적층 제조 방식 기술 분석 (Status Quo of Powder Bed Fusion Metal Additive Manufacturing Technologies)

  • 황인석;신창섭
    • 한국기계가공학회지
    • /
    • 제21권7호
    • /
    • pp.10-20
    • /
    • 2022
  • Recently, metal additive manufacturing (AM) is being investigated as a new manufacturing technology. In metal AM, powder bed fusion (PBF) is a promising technology that can be used to manufacture small and complex metallic components by selectively fusing each powder layer using an energy source such as laser or an electron beam. PBF includes selective laser melting (SLM) and electron beam melting (EBM). SLM uses high power-density laser to melt and fuse metal powders. EBM is similar to SLM but melts metals using an electron beam. When these processes are applied, the mechanical properties and microstructures change due to the many parameters involved. Therefore, this study is conducted to investigate the effects of the parameters on the mechanical properties and microstructures such that the processes can be performed more economically and efficiently.

스마트 팩토리의 제조 프로세스 마이닝에 관한 실증 연구 (An Empirical Study on Manufacturing Process Mining of Smart Factory)

  • 김태성
    • 대한안전경영과학회지
    • /
    • 제24권4호
    • /
    • pp.149-156
    • /
    • 2022
  • Manufacturing process mining performs various data analyzes of performance on event logs that record production. That is, it analyzes the event log data accumulated in the information system and extracts useful information necessary for business execution. Process data analysis by process mining analyzes actual data extracted from manufacturing execution systems (MES) to enable accurate manufacturing process analysis. In order to continuously manage and improve manufacturing and manufacturing processes, there is a need to structure, monitor and analyze the processes, but there is a lack of suitable technology to use. The purpose of this research is to propose a manufacturing process analysis method using process mining and to establish a manufacturing process mining system by analyzing empirical data. In this research, the manufacturing process was analyzed by process mining technology using transaction data extracted from MES. A relationship model of the manufacturing process and equipment was derived, and various performance analyzes were performed on the derived process model from the viewpoint of work, equipment, and time. The results of this analysis are highly effective in shortening process lead times (bottleneck analysis, time analysis), improving productivity (throughput analysis), and reducing costs (equipment analysis).

2007년 개정 교육과정에 의한 '기계 공작법' 교과서 편찬 방안 연구 (A Study on Compilation Strategy of 『Manufacturing Processes』 Textbook for Technical High School based on the 2007 Revised National Curriculum)

  • 김기수;우연재
    • 대한공업교육학회지
    • /
    • 제34권2호
    • /
    • pp.87-102
    • /
    • 2009
  • 본 연구에서는 2007년 개정 교육과정 공업계열 고등학교 전문교과 교육과정에 근거하여 '기계 공작법' 교과의 단원 내용을 선정하고, '기계 공작법' 교과의 편찬 방안을 제시하고자 첫째, 현행 7차 교육과정의 '기계 공작법' 교과서를 분석하여 2007년 개정 교육 정의'기계 공작법' 교과서 집필을 위한 면담지를 작성하였다. 둘째, 면담 조사를 통하여 '기계 공작법' 교과서의 개선안을 도출하고 교과내용을 선정하였다. 셋째, 선정된 교과내용은 집필진 및 심의진으로 구성된 전문가 협의회를 통하여 소단원 내용 구성을 수정 보완 하였다. 이 연구를 통하여 2007년 개정 교육과정과 7차 교육과정에 제시된 '기계 공작법' 교과서의 대단원 및 중단원 내용 구성에서 변화된 단원 내용을 확인하였다. 둘째, 현행 '기계 공작법' 교과서의 단원 내용 구성에서 개선되어야 할 내용을 추출하여 2007년 개정 교육과정의 '기계 공작법' 교과서의 소단원 학습 주제를 수정 보완하였다. 셋째, 2007년 개정 교육과정의 '기계 공작법'교과서의 대단원, 중단원, 소단원에 대한 내용 구성을 제시하였다.

A Case Study on Manufacturing Processes for Virtual Garment Sample

  • Choi, Young Lim
    • 한국의류산업학회지
    • /
    • 제19권5호
    • /
    • pp.595-601
    • /
    • 2017
  • Advances in 3D garment simulation technology contribute greatly to consumers becoming more immersed in movies and games by realistically expressing the garments the characters in the movie or game are wearing. The fashion industry has reached a point where it needs to maximize efficiency in production and distribution to go beyond time and space in order to compete on the global market. The processes of design and product development in the fashion industry require countless hours of work and consume vast resources in terms of materials and energy to repeat sample production and assessment. Therefore, the design and product development tools and techniques must aim to reduce the sample making process. Therefore, this study aims to study a case for comparing the real garment sample making process to the virtual garment sample making process. In this study, we have analysed the differences between the real and virtual garment making processes by choosing designated patterns. As we can see from the study results, the real and virtual garments generally are made through similar processes in manufacturing, while the time consumed for each shows great variation. In real garment making, scissoring and sewing require the greatest number of work hours, whereas in virtual garment making, most of the time was spent in the simulation process.

공정계획과 재료선정의 동시적 해결을 위한 계층구조 전문가시스템 (A Hierarchical Expert System for Process Planning and Material Selection)

  • 권순범;이영봉;이재규
    • 지능정보연구
    • /
    • 제6권2호
    • /
    • pp.29-40
    • /
    • 2000
  • Process planning (selection and ordering of processes) and material selection for product manufacturing are two key things determined before taking full-scale manufacturing. Knowledge on product design. material characteristics, processes, time and cost all-together are mutually related and should be considered concurrently. Due to the complexity of problem, human experts have got only one of the feasilbe solutions with their field knowledge and experiences. We propose a hierarchical expert system framework of knowledge representation and reasoning in order to overcome the complexity. Manufacturing processes have inherently hierarchical relationships, from top level processes to bottom level operation processes. Process plan of one level is posted in process blackboard and used for lower level process planning. Process information on blackboard is also used to adjust the process plan in order to resolve the dead-end or inconsistency situation during reasoning. Decision variables for process, material, tool, time and cost are represented as object frames, and their relationships are represented as constraints and rules. Constraints are for relationship among variables such as compatibility, numerical inequality etc. Rules are for causal relationships among variables to reflect human expert\`s knowledge such as process precedence. CRSP(Constraint and Rule Satisfaction Problem) approach is adopted in order to obtain solution to satisfy both constraints and rules. The trade-off procedure gives user chances to see the impact of change of important variables such as material, cost, time and helps to determine the preferred solution. We developed the prototype system using visual C++ MFC, UNIK, and UNlK-CRSP on PC.

  • PDF

이메뉴팩처링을 위한 협업 프로세스 모델링 (Collaborative Process Modeling for Embodying e-Manufacturing)

  • 류광열;조용주;최헌종;이석우
    • 산업공학
    • /
    • 제18권3호
    • /
    • pp.221-233
    • /
    • 2005
  • e-Manufacturing can be referred to as a system methodology enabling the integration of manufacturing operations and IT technologies to achieve objectives of an enterprise. It is recently regarded as a powerful solution to survive in a chaotic marketplace. While conducting an e-Manufacturing project, we first needed to capture collaborative processes conducted by multiple participants in order to define functions of a system supporting them. However, pervasive process modeling techniques including IDEF3, Petri nets, and UML are not sufficient for modeling collaborative processes. Therefore, we first briefly investigate several process modeling methods including aforementioned modeling methods and ARIS focusing on the collaboration point of view. Then, we propose a new modeling method referred to as Collaborative Process Modeling (CPM) to clearly describe collaborative processes. Also, we develop and illustrate a rule for transforming collaborative process models into Marked Graph models to use the analysis power of the Petri nets. Using CPM empowers us to develop collaborative process models with simple notations, understand and facilitate the realization of the collaboration, and verify models before rushing into the development.