• Title/Summary/Keyword: Manufacturing Error

Search Result 1,125, Processing Time 0.02 seconds

Study of Machined Surface Error Compensation for Autonomous Manufacturing System (자율가공 시스템을 위한 가공면 오차보상에 관한 연구)

  • 서태일
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.75-84
    • /
    • 2000
  • The main goal of our research is to compensate the milled surface errors induced by the tool deflection effects, which occur during the milling process. First, we predict cutting forces and tool deflection amount. Based on predicted deflection effects, we model milled surface shapes. We present a compensation methodology , which can generate a new tool trajectory, which is determined so as to compensate the milled surface errors. By considering manufacturing tolerance, tool path compensation is generalized. To validate the approaches proposed in this paper, we treat an illustrative example of profile milling process by using flat end mill. Simulation and experimental results are shown.

  • PDF

A Study on the Measurement for Table Deflection using Laser Interferometer and Simulation (레이저를 이용한 테이블 처짐 측정과 시뮬레이션에 관한 연구)

  • 김민주
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.6
    • /
    • pp.55-63
    • /
    • 1999
  • The acceleration of the performance of machine tools influences the development of the semi-conductor and optical technology as the development of NC and measurement technology. Because the measurement has been done to unload condition without considering of mechanical stiffness in the case of machining center as we measure the quasi-static error of machine tools on general study people who works on the spot has many problems on the data value. Also there are no satisfiable results until now in spite of many studys about this because the deflections of the table and the shaft supporting a workpiece influence, influence the accuracy of the table and shaft supporting a workpiece influence the accuracy of the workpiece. And there is doubt about the inspection method of measured error. In this paper Therefor we will help working more accurately on the spot by measuring analyzing displaying the defoec-tion of the table and support shaft when we load on the table and the support shaft of machining center using laser interfer-ometer. Also we try to settle new conception of the measurement method and more accurate grasp of the deflection tenden-cy by verifing the tendency of the error measured through the comparison of the simulated error measured through the comparison of the simulated error using ANSYS a common finite element analysis program which is able to measure heat deformation material deformation and error resulted from this study.

  • PDF

Calibration of 6-DOF Parallel Mechanism Through the Measurement of Volumetric Error (공간오차 측정을 통한 6자유도 병렬기구의 보정)

  • Oh, Yong-Taek;Saragih, Agung S.;Kim, Jeong-Hyun;Ko, Tae-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.48-54
    • /
    • 2012
  • This paper introduces the kinematic calibration method to improve the positioning accuracy of a parallel mechanism. Since all the actuators in the parallel mechanism are controlled simultaneously toward the target position, the volumetric errors originated from each motion element are too complicated. Therefore, the exact evaluation of the error sources of each motion element and its calibration is very important in terms of volumetric errors. In the calibration processes, the measurement of the errors between commands and trajectories is necessary in advance. To do this, a digitizer was used for the data acquisition in 3 dimensional space rather than arbitrary planar error data. After that, the optimization process that was used for reducing the motion errors were followed. Consequently, Levenberg-Marquart algorithm as well as the error data acquisition method turned out effective for the purpose of the calibration of the parallel mechanism.

A Study on the Side-Cut Grinding using the CBN Wheels (CBN 숫돌에 의한 측면연삭가공에 관한 연구)

  • Lee, Choong-Seok;Kim, Chang-Su;Park, Won-Kyue;Lee, Jong-Chan;Choi, Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.98-103
    • /
    • 2012
  • One of the problems in the grinding process using the machining center(MC) with a small diametric wheels is machining error due to decrease of the quill diameter. In this thesis, side-cut grinding is performed with a vitrified bonded CBN wheel on the machining center to establish the basis of the grinding using MC. The grinding force and machining error are investigated experimentally for the change of the machining condition. It is possible to estimate the machining performance by the ratio of the setting depth of cut and actual depth of cut. In addition, the relation between normal grinding force and machining error is presented by the experimental formula.

A study on the Error Separation Method in Rotation Accuracy Measurement of High Precision Spindle Unit (고정밀 스핀들의 회전정밀도 측정 오차 분리법에 관한 연구)

  • Kim, Sang-Hwa;Kim, Byung-Ha;Jin, Yong-Gyoo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.1
    • /
    • pp.78-84
    • /
    • 2014
  • The rotation of a spindle unit must be accurate for high-quality machining and to improve the quality of the machine tools.Therefore, the proper measurement of the rotation accuracy and ensuring a proper analysis are very important. Separate processes are necessary because spindle errors and roundness errors associated with the test balls can both factor into the measured rotation error values. We used three methods to discern test ball errors and analyzed which could be deemed as the most proper technique in a test of the rotation accuracy of the main spindle of a machine tool.

Method for tool alignment error Compensation of Angle controlled Ultra-Precision machining (각도 제어 초정밀 가공기의 공구 위치 검출)

  • Park, Soon-Sub;Lee, Ki-Young;Kim, Hyoung-Mo;Lee, Jae-Seol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.53-57
    • /
    • 2007
  • This paper presents a geometrical error compensation of tool alignment for B axis controlled machine. In precision machining, tool alignment is crucial parameter for machined surface. To decrease tool alignment error, plus tilted tool from B axis center is touched to reference work piece and checked the deviation from original position. Same process is performed in minus tilt. Comparing these 2 touch positions, wheel alignment error in X axis and Z axis can be calculated on B axis center. Experimental results show that this compensation method is efficient to correct tool alignment.

  • PDF

The Effects on a Side-Cut Grinding depend on the Change of the Quill Rigidity (퀼축강성 변화가 측면 연삭가공에 미치는 영향)

  • Choi, Hwan;Kim, Chang-Su;Park, Won-Kyue;Lee, Choong-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.36-41
    • /
    • 2013
  • One of the problems in grinding process using a machining center(MC) with a small diametric wheels is machining error due to decrease of the quill diameter. In this study, side-cut grinding is performed with a vitrified bonded CBN wheel on the machining center. Grinding experiments are performed at various grinding conditions including quill length, quill diameter and depth of cut. The effect on the grinding force, machining error and surface roughness due to the change of the quill rigidity are investigated experimentally. The slenderness ratio of the quill is significant factor to analyse the change of the grinding force and machining error.

Development of Registration Algorithm considering Coordinate Weights for Automobile Sub-Frame Assembly (가중치를 고려한 자동차 서브프레임의 인증 알고리즘 구현)

  • Lee, Kwang-Il;Yang, Seung-Han;Lee, Young-Moon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.7-12
    • /
    • 2004
  • Inspection and analysis are essential process to determine whether a completed product is in given specification or not. Analysis of products with very complicated shape is difficult to carry out direct comparison between inspected coordinate and designed coordinates. So process called as matching or registrations is needed to solve this problem. By defining error between two coordinates and minimizing the error, registration is done. Registration consists of translation, rotation and scale transformations. Error must be defined to express feature of inspected product. In this paper, registration algorithm is developed to determine pose of sub-frame at assembly with body of automobile by defining error between two coordinates considering geometric feature of sub-frame.

  • PDF

Error Aalysis of Mechanical Parts and Dynamic Balancing in A Dynamically Tuned Gyroscope (동조자이로스코프의 기계부 오차 해석 및 동적밸런싱)

  • J.O. Young;C.G. Ahn;Lee, J.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.2
    • /
    • pp.13-22
    • /
    • 1997
  • Strapdown inertial navigation system(SDINS) is a navigational instruments necessary to guide and con- trol a free vehicle. In this study, an error analysis of mechanical parts is carried out for manufacturing a dynamically tuned gyroscope. The errors usually come from the tolerance in machining and assembly. In the error analysis, a criterion to be considered during designing and manufacturing is proposed by quanti- tatively analyzing the effect of DTG performance by tolerances. The theory of dynamic balancing is deduced and unbalance is reduced through experiment.

  • PDF

A Study on the FCP Surface Error according to the Thickness of the Lower Silicone Plate (하부 실리콘 플레이트의 두께에 따른 FCP 표면 오차에 관한 연구)

  • Kim, Ji-Hye;Jeong, Kyeong-Tae;Lee, Donghoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.31-32
    • /
    • 2023
  • Recently, with the digitalization of the construction industry, free-form building construction technology is developing. However, the technology for manufacturing free-form concrete panels is still insufficient. In this study, the surface error of the FCP according to the thickness of the lower silicon plate, which is a component of the existing lower multi-point press, was analyzed in order to manufacture a precise FCP. As a result of the analysis, it was found that the thinner the thickness, the larger the error value. These results can be used as a basis for existing research and are expected to be used for research on high-quality FCP manufacturing technology.

  • PDF