• Title/Summary/Keyword: Manufacturing Convergence

Search Result 1,135, Processing Time 0.026 seconds

Designing a quality inspection system using Deep SVDD

  • Jungjun Kim;Sung-Chul Jee;Seungwoo Kim;Kwang-Woo Jeon;Jeon-Sung Kang;Hyun-Joon Chung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.21-28
    • /
    • 2023
  • In manufacturing companies that focus on small-scale production of multiple product varieties, defective products are manually selected by workers rather than relying on automated inspection. Consequently, there is a higher risk of incorrect sorting due to variations in selection criteria based on the workers' experience and expertise, without consistent standards. Moreover, for non-standardized flexible objects with varying sizes and shapes, there can be even greater deviations in the selection criteria. To address these issues, this paper designs a quality inspection system using artificial intelligence-based unsupervised learning methods and conducts research by experimenting with accuracy using a dataset obtained from real manufacturing environments.

Fretting fatigue life prediction for Design and Maintenance of Automated Manufacturing System (생산자동화 시스템의 설계 및 정비를 위한 프레팅 피로수명 예측)

  • Kim, Jin-Kwang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.195-204
    • /
    • 2017
  • Predicting the failure life of automated manufacturing systems can reduce overall downtime, maintenance costs, and total plant operation costs. Therefore, there is a growing interest in fatigue failure mechanisms as the safety or service life assessment of manufacturing systems becomes an important issue. In particular, fretting fatigue is caused by repeated tangential stresses that are generated by friction during small amplitude oscillatory movements or sliding between two surfaces pressed together in intimate contact. Previous studies in fretting fatigue have observed size effects related to contact width such that a critical contact width exists where there is drastic change in the fretting fatigue life. However, most of them are the two-dimensional finite element analyses based on the plane strain assumption. The purpose of this study is to investigate the contact size effects on the three-dimensional finite element model of a finite width of a flat specimen and a cylindrical pad exposed to fretting fatigue. The contact size effects were analyzed by means of the stress and strain averages at the element integration points of three-dimensional finite element model. This study shows that the fretting fatigue life of manufacturing systems can be predicted by three-dimensional finite element analysis based on SWT critical plane model.

Influence of Smart Factory Construction Factors on Utilization of Small and Medium Manufacturing Companies : Moderating Effects of Tissue change receptivity (중소 제조기업의 스마트팩토리 구축요인이 활용에 미치는 영향 - 조직변화 수용성의 조절효과검증 -)

  • Kim hyoung chel
    • Convergence Security Journal
    • /
    • v.23 no.3
    • /
    • pp.49-56
    • /
    • 2023
  • A smart factory is recognized as a very important requirement for the survival and growth of a company, and it can be said to be an important factor in improving productivity and strengthening competitiveness of a company. In particular, many small and medium-sized manufacturing companies in Korea are making efforts to meet the needs of various markets through smart factories. Building and utilizing smart factories is very important for improving and innovating the production environment of small and medium-sized manufacturing companies. This is important for many companies as well as small and medium-sized manufacturing companies to introduce and utilize smart factories in the future to induce active participation by members of the organization without feeling reluctance or anxiety about changes in smart factories, thereby increasing the utilization of smart factories. was able to confirm.

Accuracy Simulation Technology for Machine Control Systems (기계장비 제어특성 시뮬레이션 플랫폼 기술)

  • Song, Chang-Kyu;Kim, Byung-Sub;Ro, Seung-Kook;Lee, Sung-Cheul;Min, Byung-Kwon;Jeong, Young-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.292-300
    • /
    • 2011
  • Control systems in machinery equipment provide correction signals to motion units in order to reduce or cancel out the mismatches between sensor feedback signals and command or desired values. In this paper, we introduce a simulator for control characteristics of machinery equipment. The purpose of the simulator development is to provide mechanical system designers with the ability to estimate how much dynamic performance can be achieved from their design parameters and selected devices at the designing phase. The simulator has a database for commercial parts, so that the designers can choose appropriate components for servo controllers, motors, motor drives, and guide ways, etc. and then tune governing parameters such as controller gains and friction coefficients. The simulator simulates the closed-loop control system which is built and parameter-tuned by the designer and shows dynamic responses of the control system. The simulator treats the moving table as a 6 degrees-of-freedom rigid body and considers the motion guide blocks stiffness, damping and their locations as well as sensor locations. The simulator has been under development for one and a half years and has a few years to go before the public release. The primary achievements and features will be presented in this paper.

A Study on the Method to Improve Manufacturing Process Using Motion Analysis Solution (동작분석 솔루션을 활용한 제조공정개선 방법연구)

  • Kim, Hyun-Jong;Yoo, Jae-Gun;Hong, Jung-Wan
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.6
    • /
    • pp.69-75
    • /
    • 2018
  • Efficiency of Process in manufacturing industry is a critical factor to connect directly to competitiveness of product. In particular, due to FTAs with various worlds around the world, the domestic and overseas manufacturing industries are facing intense competitions, and it requires elaborate task management system for shortening production time. This study aims at seeking how to raise efficiency of manufacturing process, using motion analysis solution. When improving the process of manufacturing after verifying optimization using motion analysis solution, it can save costs for additional process, modification, or supplement. It can also deduce practical effect to improve productivity of companies. It is expected that the study will contribute to improve wastes in the work field and task assignment efficiency, to shorten time replacing equipment, to measure standard time, and to standardize task system.

External Information Network Diversity and Production Management Capability in IT SMEs in the Age of Digital Convergence: The Mediating Effect of Manufacturing Capability (디지털 융합시대에 IT 중소기업의 외부정보네트워크의 다양성과 생산관리능력: 제조능력의 매개효과를 중심으로)

  • Hau, Yong Sauk
    • Journal of Digital Convergence
    • /
    • v.13 no.9
    • /
    • pp.99-104
    • /
    • 2015
  • The production management is one of the essential capabilities of the small and medium-sized enterprises (SMEs) in the information technology sector (IT). Therefore, this study empirically analyzed the effects of such important factors as external information network diversity and manufacturing capability on IT SMEs' production management capability. Based on the 310 data collected from Korean SMEs in the IT sector, the ordinary least squares regression results from this study by using the SPSS version 22 have empirically shown that IT SMEs' external information network diversity has a positive and significant effect on their production management capability and this effect is fully mediated by their manufacturing capability. These findings provide a meaningful implication that the positive impact of IT SMEs' external information network diversity is linked to their production management capability through their manufacturing capability.

Acquisition of Data of Equipments on Shop Floor Using Interface Between Various Equipments (다양한 생산 설비와의 인터페이스를 고려한 설비정보 수집)

  • Nam, So-Jeong;Lee, Jai-Kyung;Lee, Sung-Woo;Park, Jong-Kweon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.2
    • /
    • pp.149-156
    • /
    • 2011
  • There is much information of equipment in shop floor because the manufacturing processes are different as the equipment within the manufacturing process is varied. To provide effective process information to MES and other production systems, the DAS requires an equipment monitoring system that takes into account the characteristics of the equipment on the shop floor. In this study, we proposed some methods for collecting the required information about various equipments on a shop floor. The equipments such as CNC can be interfaced with the DAS by using a PLC-based method and a sensor-based interface board can be used to interface general equipments. The proposed methods can be used to collect information on the shop floor in real-time. Moreover these methods are very adaptive and can be easily modified according to the changes made to the shop floor. The information about a real shop floor acquired by employing these methods is saved in a database and the can be provided to a supervisor and MES so that they are aware of the status of the shop floor.

Reference Information Batch Application Model for Improving the Efficiency of MES (MES 효율 향상을 위한 참조정보 일괄 적용 모델)

  • Park, Sang-Hyock;Park, Koo-Rack;Kim, Dong-Hyun;Chung, Koung-Rock
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.71-79
    • /
    • 2021
  • In the manufacturing industry, there is a transition to multi-item production for reinforcement of competitiveness. Therefore, the hybrid manufacturing technology is increasing. Especially, many efforts in production quality improvement are made through the adoption of the manufacturing execution system and ERP, so it is necessary to operate MES for prompt and effective management. MES should improve ineffective parts in production activities while managing all stages related to production of products. If there is change in the process, the changed items should be reflected to the system. However, most manufacturing execution systems are operated passively and repetitively by system administrators. This study presents a model that system administrators can comprehensively apply reference information about production related requirements on specific line's equipment to the same equipment of other lines. The flexible response for application to production lines is possible thanks to the division of blanket application and selective application of reference information through proposed model.

Development of Cloud based Data Collection and Analysis for Manufacturing (클라우드 기반의 생산설비 데이터 수집 및 분석 시스템 개발)

  • Young-Dong Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.4
    • /
    • pp.216-221
    • /
    • 2022
  • The 4th industrial revolution is accelerating the transition to digital innovation in various aspects of our daily lives, and efforts for manufacturing innovation are continuing in the manufacturing industry, such as smart factories. The 4th industrial revolution technology in manufacturing can be used based on AI, big data, IoT, cloud, and robots. Through this, it is required to develop a technology to establish a production facility data collection and analysis system that has evolved from the existing automation and to find the cause of defects and minimize the defect rate. In this paper, we implemented a system that collects power, environment, and status data from production facility sites through IoT devices, quantifies them in real-time in a cloud computing environment, and displays them in the form of MQTT-based real-time infographics using widgets. The real-time sensor data transmitted from the IoT device is stored to the cloud server through a Rest API method. In addition, the administrator could remotely monitor the data on the dashboard and analyze it hourly and daily.

A Study on the Simulation of Operational Characteristics of Industrial Robot for Automated Manufacturing System (생산자동화 시스템을 위한 산업용 로봇의 운전특성 시뮬레이션에 관한 연구)

  • Kim, Jin-Kwang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.5
    • /
    • pp.405-410
    • /
    • 2017
  • This paper deals with 3D simulation of industrial robot for automated manufacturing system. In order to evaluate the operational characteristics of the industrial robot system in the worst case motion scenario, flexible - rigid multibody analysis was performed. Then, the rigid body dynamics analysis was performed and the results were compared with the flexible - rigid multibody analysis. Modal analysis was also performed to confirm the dynamic characteristics of the robot system. In the case of the flexible-rigid multibody simulation, only the structural members of interest were modeled as elastic bodies to confirm the stress state. The remaining structural members were modeled as rigid bodies to reduce computer resources.