• 제목/요약/키워드: Manufactured materials

검색결과 2,052건 처리시간 0.029초

Evaluation of Microstructure, Phases, and Mechanical Properties of Aged Porcelain Insulator

  • Cho, Jun-Young;Jin, Woo-Chan;Bae, Sung-Hwan;Park, Chan
    • 한국재료학회지
    • /
    • 제29권3호
    • /
    • pp.137-142
    • /
    • 2019
  • The microstructure, phase, and mechanical properties of three aged porcelain insulators which were manufactured in different years (1973, 1995 and 2008) and which were used in the field for different amounts of time, were investigated. With X-ray 3D computed tomography (CT), defects with ~mm size can be detected without destroying the aged insulators. Defects of small specimens, which are cut from the aged insulators and polished, are analyzed with optical and scanning electron microscopy (OM and SEM), and defects of um size are detected by OM and SEM. The number and size of defects in all the aged insulators are similar. Porcelain insulators manufactured in 1973 contain more $SiO_2$ (quartz and cristobalite) than those manufactured in 2008. Those manufactured in 2008 contain more $Al_2O_3$ than those manufactured earlier. The Vickers hardness of the insulator manufactured in 1973 has the lowest value. The formation of the cristobalite ($SiO_2$) in the insulator manufactured in 1973 which can come from the phase transformation of quartz can cause stress in the insulator by formation of microcracks, which can lead to the low hardness of the insulator.

Kinetic Spray 공정으로 제조된 Nb 코팅 소재의 미세조직 및 물성에 미치는 열간 등압 성형(HIP)의 영향 (Effect of Hot Isostatic Pressing on the Microstructure and Properties of Kinetic Sprayed Nb Coating Material)

  • 이지혜;양상선;이기안
    • 한국분말재료학회지
    • /
    • 제23권1호
    • /
    • pp.15-20
    • /
    • 2016
  • Niobium is one of the most important and rarest metals, and is used in the electronic and energy industries. However, it's extremely high melting point and oxygen affinity limits the manufacture of Nb coating materials. Here, a Nb coating material is manufactured using a kinetic spray process followed by hot isotactic pressing to improve its properties. OM (optical microscope), XRD (X-ray diffraction), SEM (scanning electron microscopy), and Vickers hardness and EPMA (electron probe micro analyzer) tests are employed to investigate the macroscopic properties of the manufactured Nb materials. The powder used to manufacture the material has angular-shaped particles with an average particle size of $23.8{\mu}m$. The porosity and hardness of the manufactured Nb material are 0.18% and 221 Hv, respectively. Additional HIP is applied to the manufactured Nb material for 4 h under an Ar atmosphere after which the porosity decreases to 0.08% and the hardness increases to 253 Hv. Phase analysis after the HIP shows the presence of only pure Nb. The study also discusses the possibility of using the manufactured Nb material as a sputtering target.

불소 첨가/미첨가 인공타액 용액에서 연마 및 마스킹 조건이 적층제조 Ti-6Al-4V 합금의 동전위분극시험 결과에 미치는 영향 (Effects of Grinding and Masking Conditions on the Potentiodynamic Polarization Curves of Additively Manufactured Ti-6Al-4V Alloy in Artificial Saliva Solution with or Without Fluoride Ions)

  • 안경빈;장희진
    • Corrosion Science and Technology
    • /
    • 제20권6호
    • /
    • pp.475-483
    • /
    • 2021
  • Additively manufactured titanium alloy is one of the promising materials in advanced medical industries. However, these additively manufactured alloys show corrosion properties different from those of conventional materials due to their unique microstructure. In this study, the effect of surface roughness and masking conditions on the results of the potentiodynamic polarization tests on additively manufactured or conventional Ti-6Al-4V alloys in artificial saliva solution with or without fluoride was investigated. The results showed that the corrosion potential was slightly lower with a flat cell with an O-ring than with masking tape. The corrosion rate was decreased with decreases in the surface roughness. Localized corrosion involving delamination of the surface layer occurred at 7 ~ 9 V (SSC) on the additively manufactured alloy in solution with or without fluoride when the samples were finished with 1000-grit SiC paper, whereas localized corrosion was not observed in the specimens finished with 1-㎛ alumina paste.

The Effect of Uni-nanoadditive Manufactured Using RF Plasma Processing on Core-shell Structure in MLCC

  • Song, Soon-Mo;Kim, Hyo-Sub;Park, Kum-Jin;Sohn, Sung-Bum;Kim, Young-Tae;Hur, Kang-Heon
    • 한국세라믹학회지
    • /
    • 제46권2호
    • /
    • pp.131-136
    • /
    • 2009
  • Radio frequency (RF) plasma treatment is studied for the size reduction and the spheroidization of coarse particles to change them into nano-sized powders of spherical shape in MLCC fields. The uni-nanoadditives manufactured by RF plasma processing for high dispersion have been investigated for the effect on core-shell structure in dielectrics of MLCC. Microstructures have been characterized using scanning electron microscope (SEM), transmission electron microscope (TEM) and Electron Probe Micro Analyzer (EPMA). We compared the distribution of core-shell grains between specimens manufactured using uni-nanoadditive and using mixed additive. In addition, the uniformity of rare earth elements in the core-shell structured grains was analyzed. It was shown, from TEM observations, that the sintered specimen manufactured using uni-nanoadditives had more dense small grains with well-developed core-shell structure than the specimen using mixed additives, which had a homogeneous microstructure without abnormal grain growth and shows broad temperature coefficient of capacitance (TCC) curves in all temperature ranges because of well dispersed additives.

조선시대 모직물에 관한 고찰 (A STUDY ON WOOLEN FABRICS IN CHOSEN DYNASTY)

  • 이춘주
    • 복식
    • /
    • 제28권
    • /
    • pp.213-223
    • /
    • 1996
  • Woolen fabrics were manufactured in Korea since the early prehistoric period and were manufactured and used from the period of the three Kingoms and Koryo through the Chosonera. These materials were developed in to woolen fabrics through a tradition of thou-sand years. In Korea the Orient Culture of no-madic tribes and Mesopotamia Culture of stock-farming come together and developed these original woolen fabrics cultures. During the Chosen period woolen goods were frequently manufactured and used. Those re-mains consist of various hats and shoes made up of felt. And the remains which of a kind of woolen fabrics were made from the wool materials. There were various stock farms and supplies a woolen craftsman needed the wool materials. There were various stock farms and supplies a woolen craftsman needed the wool materials. And there were especial woolen goods shops as Choung Po Joun.

  • PDF

Ti-6Al-4V 합금 기지 위에 FGM 방식으로 적층제조 된 Inconel 718의 접합 특성 분석 (Joint Properties of Inconel 718 Additive Manufactured on Ti-6Al-4V by FGM method)

  • 박찬웅;박진웅;정기채;이세환;김성훈;김정한
    • 한국분말재료학회지
    • /
    • 제28권5호
    • /
    • pp.417-422
    • /
    • 2021
  • In the present work, Inconel 718 alloy is additively manufactured on the Ti-6Al-4V alloy, and a functionally graded material is built between Inconel 718 and Ti-6Al-4V alloys. The vanadium interlayer is applied to prevent the formation of detrimental intermetallic compounds between Ti-6Al-4V and Inconel 718 by direct joining. The additive manufacturing of Inconel 718 alloy is performed by changing the laser power and scan speed. The microstructures of the joint interface are characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and micro X-ray diffraction. Additive manufacturing is successfully performed by changing the energy input. The micro Vickers hardness of the additive manufactured Inconel 718 dramatically increased owing to the presence of the Cr-oxide phase, which is formed by the difference in energy input.

L-PBF 공정 처리된 Fe-Si 합금의 열처리 조건에 따른 미세조직 및 기계적 특성 (Mechanical Property and Microstructure of the Annealed Fe-Si Alloy Manufactured by Laser-Powder Bed Fusion)

  • 박준영;곽민석;정상국;김형섭;김정기
    • 소성∙가공
    • /
    • 제32권2호
    • /
    • pp.67-73
    • /
    • 2023
  • To overcome a climate change, manufacturing complex-shaped electric mobility parts becomes one of the important issues for enhancing a performance of motor with reducing their weight. Therefore, development of laser-based additive manufacturing shed on light due to their flexible manufacturing capacity that can be suitable to solve the poor formability of Fe-Si alloys for electric mobility parts. Although there are several studies existed to optimize the performance of additively manufactured Fe-Si alloys, the post-annealing effect was not well investigated yet though this is important to control the texture and mechanical properties of additively manufactured parts. In the present work, annealing effect on the mechanical property and microstructure of additively manufactured Fe-4.5Si alloy was investigated. Because of the ordered phase initiation after annealing, the hardness of additively manufactured Fe-4.5Si alloy increased up to 1173 K while a hardness drop occurs at the 1273 K condition due to the micro-crack initiation. The response surface methodology result represents the 1173 K-5 h sample is an optimal condition to maximize the mechanical property of additively manufactured alloy without micro-cracks.

Hybrid Nanocomposites: Processing and Properties

  • Shi, Y.;Kanny, K.;Jawahar, P.
    • Advanced Composite Materials
    • /
    • 제18권4호
    • /
    • pp.365-379
    • /
    • 2009
  • Epoxy/S2-glass reinforced composites (SGRPs) infused with Cloisite 30B nanoclays were manufactured using the vacuum assisted resin infusion molding (VARIM) process. Prior to infusion, the matrix and clays were thoroughly mixed using a direct mixing technique (DMT) and a high shear mixing technique (HSMT) to ensure uniform dispersion of the nanoclays. Structures with varying clay contents (1-3 wt%) were manufactured. Both pristine and SGRP nanocomposites were then subjected to mechanical testing. For the specimens manufactured by DMT, the tensile, flexural, and compressive modulus increased with increasing the clay content. Similarly, the tensile, flexural, compressive, interlaminate shear and impact strength increased with the addition of 1 wt% clay: however the trend reversed with further increase in the clay content. Specimens manufactured by HSMT showed superior properties compared to those of nanocomposites containing 1 wt% clay produced by DMT. In order to understand these phenomena a morphological study was conducted. Transmission electron microscopy (TEM) micrographs revealed that HSMT led to better dispersion and changed the nanoclay structure from orderly intercalation to disorderly intercalation giving multi-directional strength.

배기가스를 정화하는 흡음재의 특성에 관한 연구 (A Study on Properties of Sound Absorbing Materials with Characteristics of Exhaust-gas Purge)

  • 이승한;황보광수;장석수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.935-940
    • /
    • 2001
  • This study search for absorbing sound and exhaust-gas which aims to manufacture continuous void by using clay and foam, the surface of materials is covered with $TiO_{2}$ powder as heat treatment. According to the results of the experiment, the increase of thickness of manufactured sound absorbing materials caused the increase of absorption rate in the range of low and middle sound and thus it can be an important factor of improving absorption rate. Sound absorbing materials could satisfy 70% of the average of sound absorption ratio in 7cm thickness. Also, the manufactured sound absorbing materials is covered with $TiO_{2}$ showed an excellency in the clarification of exhaust-gas under ultraviolet rays treatment when 70% of removal rate and about 10% of generation rate of $NO_{2}$ is settled by the flow of 2 $\ell$/min NO gas. Especially, manufactured sound absorbing materials could improve compressive strength of continuos porous concrete. in the case of 7% bubble addition, when the substitution rate of coagulator was 30% and 20%, compressive strength was 45kgf/$cm^{2}$ and 65kgf/$cm^{2}$ respectively. As the substitution rate of coagulator reducing, compressive strength increased after preforming burnt clay.

  • PDF

선체구조용 FRP 복합재료의 강도 특성 (Strength Characteristics of FRP Composite Materials for Ship Structure)

  • 최한규;남기우;안석환
    • 한국해양공학회지
    • /
    • 제27권4호
    • /
    • pp.45-54
    • /
    • 2013
  • In this study, various types of composite materials and adhesives that are actually used in the shipbuilding field for small ships, leisure boats, and fishing boats were applied in the hand lay-up method and vacuum infusion method to manufacture specimens. Then the tensile strength, tensile modulus, flexural strength, and flexural modulus values of these specimens were obtained. In addition, the barcol hardness and fiber content were obtained from the specimens. The results showed that the strengths of the specimens manufactured using the vacuum infusion method were higher than those manufactured using the hand lay-up method. Moreover, the barcol hardness and fiber content were also higher in those manufactured using the vacuum infusion method. The specimens manufactured using the vacuum infusion method were thinner despite their large fiber content.