• Title/Summary/Keyword: Manned Aircraft

Search Result 77, Processing Time 0.022 seconds

The Development of The Simulation Environment for Operating a Simultaneous Man/Unmanned Aerial Vehicle Teaming (유/무인 항공기 복합운용체계 검증을 위한 시뮬레이션 환경 구축)

  • Gang, Byeong Gyu;Park, Minsu;Choi, Eunju
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.6
    • /
    • pp.36-42
    • /
    • 2019
  • This research illustrates how the simulation environment for operating the simultaneous man/unmanned aerial vehicle teaming is constructed. X-Plane program, HILS for the ducted fan aircraft (unmanned) and CTLS (manned aircraft) with communication devices are interfaced to simulate the basic co-operational flight. The X-plane and HILS can allow operators to experience the maned and unmanned aircraft operation in the airspace on the ground in turn they can perform various simulated missions in advance before the actual flight. For the test purpose, the data link between man/unmanned aircraft and ground control station is examined using C Band and UHF radio channels by the manned aircraft.

Integrated Air Traffic Simulations of Manned and Remotely Piloted Aircraft (유무인항공기 통합 시뮬레이션 연구)

  • Oh, Hyeju;Park, Bae-Seon;Choi, Keeyoung;Lee, Hak-Tae;Jung, Hyun-Tae;Moon, Woo-Choon
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.492-498
    • /
    • 2015
  • With the rapid growth of technologies and demand of remotely piloted aircraft systems (RPASs), integration of such systems into the existing airspace is becoming an issue in many countries. To assess the impact of integrated operations of manned and remotely piloted aircraft (RPA), it is necessary to perform Human-in-The-Loop (HiTL) simulations of likely situations with an integrated simulation system. This paper defines several operational concepts for the integrated simulation. Several probable scenarios were developed including a traffic pattern at a small airport and an altitude maneuver at a route crossing. HiTL simulations were performed according to the developed scenarios. The simulation results are analyzed focusing on the impacts of different communication, safety, performance, and human machine interface (HMI) characteristics of RPA.

A Methodology for Evaluating Mission Suitability of Manned-Unmanned Aircraft Teaming for SEAD Missions (SEAD 임무 수행을 위한 유x무인기 협업 체계의 임무적합도 평가 방법론 연구)

  • Seo, Wonik;Lee, Hyun Moo;Kim, Jeong-Hun;Choi, Keeyoung;Jee, Cheol-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.11
    • /
    • pp.935-943
    • /
    • 2020
  • This paper presents a methodology for evaluating suitability of a manned-unmanned aerial vehicle team for a complicated mission. The study identified vehicle performance, equipment performance and level of autonomy as the key factors that affect the mission effectiveness. A manned and an unmanned aircraft were compared, and their performance was quantized in these respects. SEAD was chosen as a representative manned-unmanned team mission. The SEAD mission was broken down to a sequence of tasks. Mission experts evaluated the importance of each mark item for the mission legs. Combining the results showed proper type of aircraft for each leg depending on the complexity, safety, and importance of the task. Finally, the whole mission plan was laid out as a time-based sequence which alleviate pilot workload significantly.

Technical Trends for Fuel Cell Aircraft (연료전지항공기 기술 동향)

  • Kim, Keun-Bae
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.2
    • /
    • pp.95-105
    • /
    • 2009
  • Fuel cells are applied to the propulsion system of aircraft based on environmental-friendly characteristics with low noise and zero emission of CO2, currently many kinds of UAV and small manned aircraft equipped with fuel cells are being developed. Fuel cells for aircraft typically classified into PEMFC(Proton Exchange Membrane Fuel Cell) type and SOFC(Solid Oxide Fuel Cell) type and the system is developed to adapt missions and operational conditions of aircraft. For UAV, various types of aircraft mostly based on PEM fuel cell technology are investigated for military or commercial uses, and the stability and endurance of system will be improved. For small manned aircraft, many researches are carried out to substitute the propulsion system by fuel cell, also some developments for the higher performance of APU of large commercial aircraft to apply fuel cells are in progress. In the future, a fuel cell aircraft will be expected to improve the reliability and efficiency with higher power density.

  • PDF

Deriving Priorities between Autonomous Functions of Unmanned Aircraft using AHP Analysis: Focused on MUM-T for Air to Air Combat (AHP 기법을 이용한 무인기 자율기능 우선순위 도출: 유무인 협업 공대공 교전을 중심으로)

  • Jung, Byungho;Oh, Jihyun;Seol, Hyeonju;Hwang, Seong In
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.1
    • /
    • pp.10-19
    • /
    • 2022
  • Recently, the Defense Advanced Research Projects Agency(DARPA) in the United States is studying a new concept of war called Mosaic Warfare, and MUM-T(Manned-Unmanned Teaming) through the division of missions between expensive manned and inexpensive unmanned aircraft is at the center. This study began with the aim of deriving the priority of autonomous functions according to the role of unmanned aerial vehicles in the present and present collaboration that is emerging along with the concept of mosaic warfare. The autonomous function of unmanned aerial vehicles between the presence and absence collaboration may vary in priority depending on the tactical operation of unmanned aerial vehicles, such as air-to-air, air-to-ground, and surveillance and reconnaissance. In this paper, ACE (Air Combat Evaluation), Skyborg, and Longshot, which are recently studied by DARPA, derive the priority of autonomous functions according to air-to-air collaboration, and use AHP analysis. The results of this study are meaningful in that it is possible to recognize the priorities of autonomous functions necessary for unmanned aircraft in order to develop unmanned aerial vehicles according to the priority of autonomous functions and to construct a roadmap for technology implementation. Furthermore, it is believed that the mass production and utilization of unmanned air vehicles will increase if one unmanned air vehicle platform with only essential functions necessary for air-to-air, air-to-air, and surveillance is developed and autonomous functions are expanded in the form of modules according to the tactical operation concept.

Study for Determining Design Allowable Values of Light Weight Composite Unmanned Aircraft Structures (경량 복합재료 무인기 구조물 설계 허용치 설정 방안 연구)

  • Kim, Sung Joon;Park, Sang Wook;Kim, Tae Uk
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.4
    • /
    • pp.1-7
    • /
    • 2017
  • The development of effective design allowable values for unmanned composite aircraft is an issue of paramount concern for the industry. The application of conventional manned aircraft structural certification methods to unmanned aircraft such as prototype and technology demonstrators, can lead to excessively long development time and costs. In this paper, the determining method of composite structure design allowable values for light composite unmanned aircraft is presented to reduce to the structural weight. This paper seeks to show the applicability of composite B-basis material values as a design allowable of light composite unmanned aircraft structures. A review of different civil and UAV targets failure probability is given. From the results, the researchers can know that the requirements of light composite unmanned aircraft design allowable should be alleviated, compared to manned composite aircrafts.

GNSS Airborne Multipath Error Modeling Under UAV Platform and Operating Environment

  • Kim, Minchan;Kim, Kiwan;Lee, Dong-Kyeong;Lee, Jiyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • In the case of an unmanned aerial vehicle (UAV) equipped with a GNSS sensor, a boundary line where the vehicle can actually exist can be calculated using a navigation error model, and safe navigation (e.g., precise landing and collision prevention) can be supported based on this boundary line. Therefore, for the safe operation of UAV, a model for the position error of UAV needs to be established in advance. In this study, the multipath error of a GNSS sensor installed at UAV was modeled through a flight test, and this was analyzed and compared with the error model of an existing manned aircraft. The flight test was conducted based on a scenario in which UAV performs hovering at an altitude of 40 m, and it was found that the multipath error value was well bound by the error model of an existing manned aircraft. This result indicates that the error model of an existing manned aircraft can be used in operation environments similar to the scenario for the flight test. Also, in this study, a scenario for the operation of multiple UAVs was considered, and the correlation between the multipath errors of the UAVs was analyzed. The result of the analysis showed that the correlation between the multipath errors of the UAVs was not large, indicating that the multipath errors of the UAVs cannot be canceled out.

Automatic Flight Control System Development for Optionally Piloted Vehicle (유무인 겸용 비행체의 자동비행조종시스템 개발)

  • Lee, Sangjong;Choi, Hyoung Sik;Seong, Kie-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.11
    • /
    • pp.968-973
    • /
    • 2014
  • Optionally Piloted Vehicle is one of the UAV development technology and method, which can provide the economic and efficient unmanned system. Existing manned aircraft is evaluated through much flight operations and it can supply the reliable aircraft platform, engine and subsystems for operation. In addition, OPV can be operated both manned and unmanned vehicle to satisfy the mission requirement. under the certain flight conditions. This paper describes main development procedures for automatic flight control system of OPV and summarizes the technical issues and results.

Study of Speech Recognition System Operation for Voice-driven UAV Control (음성 기반 무인 항공기 제어를 위한 음성인식 시스템 운용 체계 연구)

  • Park, Jeong-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.3
    • /
    • pp.212-219
    • /
    • 2019
  • As unmanned aerial vehicle (UAV) has been utilized for military operation, efficient ways for controlling UAV has been necessary. In particular, instead of conventional approach using console control, speech recognition based UAV control is essential for military environments in which rapid command operation is required. But research on this novel approach is not actively studied yet. In this study, we introduce efficient ways of speech recognition system operation for voice-driven UAV control, focusing on mission command control from manned aircraft rather than ground control center. We propose an efficient way of system operation for UAV control in cooperation of aircraft and UAV, and verify its efficiency via speech recognition experiment.

Study on Revision of Aviation Safety act for RPAS (무인항공기 안전운용을 위한 항공안전법 개정방향에 대한 연구)

  • Hong, Hye-Jung;Han, Jae-Hyun
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.35 no.3
    • /
    • pp.65-93
    • /
    • 2020
  • With the development of information and communication technology, the unmanned aerial vehicle industry began to attract attention as a new growth industry as it entered the fourth industrial revolution. As the size of the unmanned aerial vehicles and the scope of airspace vary from small drones to large unmanned aerial vehicles, the developed countries such as USA and Europe are developing plans for the integrated operation of manned and unmanned aerial vehicles. ICAO is also working on amendments to the relevant ICAO annexes to establish international standards and recommendations for unmanned aerial vehicles. Korea also needs to prepare for the integrated operation of manned and unmanned aerial vehicles that will come in the future, and for this purpose, it is necessary to review and revise the national regulation systems for the safe operation of unmanned aerial vehicles. This study analyzes the amendments of related annexes discussed on the Remotely Piloted Aircraft System (RPAS) pannel, and suggests the direction of revision of the Aviation Safety Act for the safe operation of unmanned aerial vehicles in comparison with the existing Aviation Safety Act.