• Title/Summary/Keyword: Manganese chloride

Search Result 61, Processing Time 0.027 seconds

Removal of High Concentration Manganese in 2-stage Manganese Sand Filtration (2단 망간모래여과에 의한 고농도 망간 처리)

  • Kim, Chung H.;Yun, Jong S.;Lim, Jae L.;Kim, Seong S.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.503-508
    • /
    • 2007
  • Small scale D-water treatment plant(WTP) where has slow sand filtration was using raw water containing high concentration of manganese (> 2mg/l). The raw water was pre-chlorinated for oxidation of manganese and resulted in difficulty for filtration. Thus, sometimes manganese concentration and turbidity were over the water quality standard. Two stage rapid manganese sand filtration pilot plant which can treat $200m^3/d$ was operated to solve manganese problem in D-WTP. The removal rate of manganese and turbidity were about 38% and 84%, respectively without pH control of raw water. However, when pH of raw water was controlled to average 7.9 with NaOH solution, the removal rate of manganese and turbidity increased to 95.0% and 95.5%, respectively and the water quality of filtrate satisfied the water quality standard. Manganese content in sand was over 0.3mg/g which is Japan Water Association Guideline. The content in upper filter was 5~10 times more than that of middle and lower during an early operation but the content in middle and lower filter was increased more and more with increase of operation time. This result means that the oxidized manganese was adsorbed well in sand. Rapid manganese sand filter was backwashed periodically. The water quality of backwash wastewater was improved by sedimentation. Thus, turbidity and manganese concentration decreased from 29.4NTU to 3.09NTU and from 1.7mg/L to 0.26mg/L, respectively for one day. In Jar test of backwash wastewater with PAC(Poly-aluminum chloride), optimum dosage was 30mg/L. Because the turbidity of filtrate was high as 0.76NTU for early 5 minute after backwash, filter-to-waste should be used after backwash to prevent poor quality water.

Study of a hybrid process combining ozonation and ceramic membrane for drinking water treatment (I) : manganese removal (정수처리를 위한 전오존-세라믹 막여과 조합공정에 관한 연구(I) : 망간 제거 중심)

  • Jin, Kwang Ho;Lim, Jae Lim;Lee, Kyung Hyuk;Wang, Chang Gun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.6
    • /
    • pp.633-640
    • /
    • 2008
  • In this research, the $3.6m^3/day$ scale pilot plant consisting preozonation, coagulation, flocculation, and ceramic membrane processes was operated for long term period to evaluate the validity of ceramic membrane filtration process for treating lake water containing high concentration manganese. The higher concentration of dissolved manganese($Mn^{2+}$) was effectively oxidized to the bigger insoluble colloidal manganese ($MnO^2$) by 1~2 mg/L ozone. The colloidal manganese reacted with coagulant (poly aluminium chloride, PAC) and then formed the big floc. Ceramic membrane rejected effectively manganese floc during membrane filtration. Dissolved organic carbon(DOC) removal was dependent upon $Mn^{2+}$ concentration. While average $Mn^{2+}$ concentration was 0.43 and 0.85 mg/L in raw water, DOC removal rate in preozonation was 26.5 and 13.5%, respectively. The decrease rate of membrane permeability was faster without preozonation than with preozonation while membrane fouling decreased with NOM oxidation by ozone. In conclusion, raw water containing high concentration of manganese can be effectively treated in preozonation-coagulation-ceramic membrane filtration system.

Manganese Dioxide-Based Chlorination of Alcohols Using Silicon Tetrachloride (이산화망간 존재하에서 사염화규소를 이용한 알코올의 염소화반응)

  • Ha, Dong Soo;Yoon, Myeong Jong
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.10
    • /
    • pp.541-546
    • /
    • 1997
  • Manganese dioxide may react with silicon tetrachloride to form manganese(Ⅳ) oxodichloride which reacts subsequently with another molecule of silicon tetrachloride leading to manganese tetrachloride eventually in chlorinated solvents. This in situ generated manganese(Ⅳ) oxodichloride or manganese tetrachloride were found to be very effective for the chlorination of a wide variety of alcohols to the corresponding chlorides. Primary, secondary and benzylic alcohols were converted into corresponding chlorides when treated with silicon tetrachloride in the presence of manganese dioxide at room temperature.

  • PDF

Manganese-Enhanced MRI Reveals Brain Circuits Associated with Olfactory Fear Conditioning by Nasal Delivery of Manganese

  • Yang, Ji-ung;Chang, Yongmin;Lee, Taekwan
    • Investigative Magnetic Resonance Imaging
    • /
    • v.26 no.2
    • /
    • pp.96-103
    • /
    • 2022
  • Purpose: The survival of organisms critically depends on avoidance responses to life-threatening stimuli. Information about dangerous situations needs to be remembered to produce defensive behavior. To investigate underlying brain regions to process information of danger, manganese-enhanced MRI (MEMRI) was used in olfactory fear-conditioned rats. Materials and Methods: Fear conditioning was conducted in male Sprague-Dawley rats. The animals received nasal injections of manganese chloride solution to monitor brain activation for olfactory information processing. Twenty-four hours after manganese injection, rats were exposed to electric foot shocks with odor cue for one hour. Control rats were exposed to the same odor cue without foot shocks. Forty-eight hours after the conditioning, rats were anesthetized and their brains were scanned with 9.4T MRI. Acquired images were processed and statistical analyses were performed using AFNI. Results: Manganese injection enhanced brain areas involved in olfactory information pathways in T1 weighted images. Rats that received foot shocks showed higher brain activation in the central nucleus of the amygdala, septum, primary motor cortex, and preoptic area. In contrast, control rats displayed greater signals in the orbital cortex and nucleus accumbens. Conclusion: Nasal delivery of manganese solution enhanced olfactory signal pathways in rats. Odor cue paired with foot shocks activated amygdala, the central brain region in fear, and related brain circuits. Use of MEMRI in fear conditioning provides a reliable monitoring technique of brain activation for fear learning.

Sanitary Chemical Conditions of Farmwaters in Choongcheongnam and Kangwon Province According to Spring and Summer (충청남도 및 강원도 목장지역 목장용수의 춘하절간 위생화학적 변화)

  • 이강문;박석기;이용욱
    • Journal of Food Hygiene and Safety
    • /
    • v.9 no.4
    • /
    • pp.229-235
    • /
    • 1994
  • It is very important to investigate the sanitary chemical conditions of farmwaters used for cattle breeding in the dairy farms. For this purpose we examined pH, KMnO4 consumption, total hardness, chloride, sulfate, NH3-N, NO3-N, fluoride, lead, iron, manganese, cadmium, copper, zinc and chrome in the farmwaters sampled 2 times(spring and summer)in Choongcheongnam and Kangwon Province. The pH of farmwaters in Choongcheongnam and Kangwon Province was 6.49$\pm$0.09, 6.70$\pm$0.06, total hardness 90.21$\pm$7.07, 64.53$\pm$6.38 mg/ι, consumption of KMnO4 4.13$\pm$0.62, 4.34$\pm$0.26mg/ι, NO3-N 6.51$\pm$0.55, 3.61$\pm$0.58 mg/ι, chloride ion 20.51$\pm$1.99, 5.41$\pm$1.36 mg/ι and sulfate ion 6.61$\pm$1.02, 7.28$\pm$1.30 mg/ι, respectively. But NH3-N was scarcely detected. Fluoride, iron, lead, cadmium, zinc, manganese and chrome were not detected from the tested farmwaters. There was high significance between each other in total hardness, NO3-N, chloride ion and sulfate ion. There was regional and seasonal significance in only NO3-N but only regional significance in total hardness and chloride ion.

  • PDF

Surface-functionalized Hexagonal Mesoporous Silica Supported 5-(4-Carboxyphenyl)-10,15,20-triphenyl Porphyrin Manganese(III) Chloride and Their Catalytic Activity

  • Zhang, Wei-Jie;Jiang, Ping-Ping;Zhang, Ping-Bo;Zheng, Jia-Wei;Li, Haiyang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4015-4022
    • /
    • 2012
  • Manganese(III) 5-(4-carboxyphenyl)-10,15,20-triphenyl porphyrin chloride (Mn(TCPP)Cl) was grafted through amide bond on silica zeolite Y (HY), zeolite beta ($H{\beta}$) and hexagonal mesoporous silica (HMS). XRD, ICP-AES, $N_2$ physisorption, SEM, TEM, FTIR and thermal analysis were employed to analyse these novel heterogeneous materials. These silica supported catalysts were shown to be used for epoxidation and good shape selectivity was observed. The effect of support structure on catalytic performance was also discussed. The catalytic activity remained when the catalysts were recycled five times. The energy changes about epoxidation of alkenes by $NaIO_4$ and $H_2O_2$ were also computationally calculated to explain the different catalytic efficiency.

Effect of Phosphate Surface Treatment on the Localized Corrosion Resistance of UNS G41400 Steel (UNS G41400 강의 인산염 표면 처리에 따른 국부 부식 저항성)

  • Jun-Seob Lee;Siwook Park
    • Corrosion Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.429-434
    • /
    • 2023
  • This study investigated the localized corrosion behavior of a UNS G41400 steel surface treated with manganese phosphate. The phosphate coating, primarily composed of oxygen (O), phosphorus (P), and manganese (Mn) elements, had an approximate thickness of 6 ㎛. The particles comprising the coating varied in size by several micrometers; smaller particles were mainly composed of O, P, Mn, and iron (Fe) elements, indicating incomplete formation of the manganese phosphate film. Potentiodynamic polarization curves revealed a decrease in anodic current after surface treatment and a shift in corrosion potential toward the noble direction after treatment. After immersion in a 3.5 wt% NaCl solution for 96 hours, localized corrosion was observed, with some regions retaining residual phosphate film. Even though localized corrosion occurred on the treated surface, it was less severe than that on the untreated UNS G41400 steel surface. These findings suggest that manganese phosphate coating improved resistance to localized corrosion.

Improved Thiocyanate-Selective Electrode Based on Tetra(trimethylphenyl)-porphyrinato Manganese(III) Chloride: The Electronic and pH Effects

  • Seo, Hyung-Ran;Lee, Hyo-Kyoung;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.10
    • /
    • pp.1484-1488
    • /
    • 2004
  • The thiocyanate-selective PVC membrane electrodes based on 5,10,15,20-tetrakis(2,4,6-trimethylphenyl)-porphyrinatomanganese(III) chloride [Mn(TMP)Cl] and 5,10,15,20-tetrakis(2,6-dichlorophenyl)porphyrinatomanganese(III) chloride $[Mn(Cl_8TPP)Cl]$ as ion carriers were investigated. The effect of ionophores, membrane compositions, plasticizers, and solution pHs on the response characteristics were studied. The Mn(TMP)Cl as an ionophore shows the best potentiometric sensitivity with a slope of -58.7 mV/decade and a detection limit of $log[SCN^-]$ = -6.90, and selectivity for thiocyanate over strong hydrophobic interfering anions such as ${ClO_4}^-$ and salicylate. The potentiometric response is affected by the electronic effect of the substituents and solution pHs. The presence of substituents with electron donating and more liphophilic characters around the ligated metal center produces an improved response toward $SCN^-$.

Preparation of PVC-LMO Beads Using Dimethyl Sulfoxide Solvent and Adsorption Characteristics of Lithium Ions (다이메틸설폭시화물 용매를 사용한 PVC-LMO 비드의 제조와 리튬 이온 흡착 특성)

  • You, Hae-Na;Lee, Dong-Hwan;Lee, Min-Gyu
    • Clean Technology
    • /
    • v.20 no.2
    • /
    • pp.154-159
    • /
    • 2014
  • In this study, PVC-LMO beads were prepared by immobilizing lithium manganese oxide (LMO) with poly vinyl chloride (PVC) diluted in dimethyl sulfoxide (DMSO) solvent on behalf of N-methyl-2-pyrrolidone (NMP). XRD analysis confirmed that LMO was immobilized well in PVC-LMO beads. The diameter of PVC-LMO beads synthesized by DMSO was about 4 mm. The adsorption experiments of lithium ions by PVC-LMO beads were conducted batchwise. The maximum adsorption capacity obtained from Langmuir model was 21.31 mg/g. The adsorption characteristics of lithium ions by PVC-LMO beads was well described by the pseudo-second-order kinetic model. It was considered that the internal diffusion was the rate controlling step.

Electromagnetic Interference Reflectivity of Nanostructured Manganese Ferrite Reinforced Polypyrrole Composites

  • Chakraborty, Himel;Chabri, Sumit;Bhowmik, Nandagopal
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.6
    • /
    • pp.295-298
    • /
    • 2013
  • Nano-size manganese ferrite reinforced conductive polypyrrole composites reveal a core-shell structure by in situ polymerization, in the presence of dodecyl benzene sulfonic acid as the surfactant and dopant, and iron chloride as the oxidant. The structure and magnetic properties of manganese ferrite nano-fillers were measured, by using X-ray diffraction and vibrating sample magnetometer. The morphology, microstructure, and conductivity of the composite were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, and four-wire technique. The microwave-absorbing properties of composites reinforcement dispersed in resin coating with the coating thickness of 1.2 nm were investigated, by using vector network analyzers, in the frequency range of 8~12 GHz. A reflection loss of -8 dB was observed at 10.5 GHz.