• Title/Summary/Keyword: Manganese(III)

Search Result 76, Processing Time 0.023 seconds

Synergistic Solvent Extraction of Manganese(II) by using Cupferron and Tetrabutylammonium ion (Cupferron과 Tetrabutylammonium ion을 이용한 Mn(II)의 상승용매 추출에 관한 연구)

  • In, Gyo;So, Jin-Hwan;Choi, Jong-Moon;Kim, Young-Sang
    • Analytical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • The synergistic solvent extraction of Mn(II) by N-nitroso-N-phenylhydroxylamineammonium salt (cupferron) and tetrabutylammonium ion ($TBA^+$) has been studied. In the presence of $TBA^+$, over 95% Mn(II) was extracted from an aqueous solution into chloroform by the cupferron in the pH range of 4 to 10. But a part of Mn(II) was extracted with only cupferron. The ternary complex of Mn(II) was more efficiently extracted into $CH_2Cl_2$ and $CHCl_3$ than other nonpolar solvents. The extracted Mn(II) was determined in the back-extracted $HNO_3$ solution by GF-AAS. This fixed procedure was applied to the determination of trace Mn(II) in tap water samples of pH 5.0. The detection limit equivalent to 3 times standard deviation of the background absorption was 0.37 ng/mL and Mn(II) was determined with the range of 0.4 to 1.01 ng/mL in our laboratory's tap water. And the recovery was 94 to 107% in samples in which 2.0 ng/mL Mn(II) was spiked. The interferences of common concomitant elements such as Cu(II), Ca(II), Fe(III) and so on were not shown up to $10{\sim}20{\mu}g/mL$. From these results, this procedure could be concluded to be applied for the determination of trace Mn(II) in other environmental water samples.

Acoustic Characterization of Three Seamounts Located in the Northwest of Marshall Islands, Western Pacific (서태평양 마샬제도 북서쪽에 위치한 세 해저산에 대한 음향상 연구)

  • Lee, Tae-Gook;Lee, Kie-Hwa;Moon, Jai-Woon;Jung, Mee-Sook;Kim, Hyun-Sub;Lee, Sang-Mook
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.3
    • /
    • pp.193-206
    • /
    • 2004
  • Geophysical data including chirp (3 7 kHz) subbottom profile and detailed bathymetry were obtained over three seamounts in the Ogasawara Fracture Zone (OFZ) of the western Pacific, as a part of manganese crust survey onboard R/V Onnuri in 2003. The OFZ is a 150-km-wide, 600-km-long rift zone, which separates the East Mariana and Pigafetta Basin. The OFZ is unique in that it includes many seamounts (e.g., Magellan Seamounts andseamounts on the Dutton Ridge). The sub-seafloor acoustic echoes obtained near the OFZ were classified into following types on the basis of their characteristics: types I-1(pelagic sediment with parallel or subparallel reflectors), I-2 (pelagic sediment with no internal reflectors), and III-1 (reef build-up complex) on summit; types II-1 and III-2 (basement outcrop) on flank rift zone and upper slope, respectively; type III-3 (slump) on the lower slope and embayment between the flank rift zones; types II-2 (debrite) on the base of slope and basin floor; and types II-3 (turbidite or pelagic sediment) and II-4 (turbidite) on the basin floor. The mass-wasting that produced the complex of type II-2 debrite and III-3 slump on the lower slope and basin may have been caused by (1) strong tensional stress in the OFZ which may cause the numerous fissures or basement faults and (2) complex of the faults on the summit and steep upper slope. The variations in the echo type of pelagic sediment in the summit of seamounts may be related with the changes in the depositional and/or erosional environments. Type I-2 pelagic sediment, which is characterized by a thin and intermittent coverage, was probably deposited at a sheltered area when the current was strong, whereas type I-1 pelagic deposit occurred during a stage of progressive sedimentation.

  • PDF

Ferromagnetism and Anomalous Hall Effect of $TiO_2$-based superlattice films for Dilute Magnetic Semiconductor Applications

  • Jiang, Juan;Seong, Nak-Jin;Jo, Young-Hun;Jung, Myung-Hwa;Yang, Jun-Mo;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.41-41
    • /
    • 2007
  • For use in spintronic materials, dilute magnetic semiconductors (DMS) are under consideration as spin injectors for spintronic devices[l]. $TiO_2$-based DMS doped by a cobalt, iron, and manganese et al. was recently reported to show ferromagnetic properties, even at temperatures above 300K and the magnetic ordering was explained in terms of carrier-induced ferromagnetism, as observed for a III-V based DMS. An anomalous Hall effect (AHE) and co-occurance of superparamagnetism in reduced Co-doped rutile $TiO_{2-\delta}$ films have also been reported[2]. Metal segregation in the reduced metal-doped rutile $TiO_2-\delta$ films still remains as problems to solve the intrinsic DMS properties. Superlattice films have been proposed to get dilute magnetic semiconductor (DMS) with intrinsicroom-temperature ferromagnetism. For a $TiO_2$-based DMS superlattice structure, each layer was alternately doped by two different transition metals (Fe and Mn) and deposited to a thickness of approximately $2.7\;{\AA}$ on r-$Al_2O_3$(1102) substrates by pulsed laser deposition. The r-$Al_2O_3$(1102) substrates with atomic steps and terrace surface were obtained by thermal annealing. Samples of $Ti_{0.94}Fe_{0.06}O_2$(TiFeO), $Ti_{0.94}Mn_{0.06}O_2$(TiMnO), and $Ti_{0.94}(Fe_{0.03}Mn_{0.03})O_2$ show a low remanent magnetization and coercive field, as well as superparamagnetic features at room temperature. On the other hand, superlattice films (TiFeO/TiMnO) show a high remanent magnetization and coercive field. An anomalous Hall effect in superlattice films exhibits hysisteresis loops with coercivities corresponding to those in the ferromagnetic Hysteresis loops. The superlattice films composed of alternating layers of $Ti_{0.94}Fe_{0.06}O_2$ and $Ti_{0.94}Mn_{0.06}O_2$ exhibit intrinsic ferromagnetic properties for dilute magnetic semiconductor applications.

  • PDF

Recovery of Nickel from Waste Iron-Nickel Alloy Etchant and Fabrication of Nickel Powder (에칭 폐액으로부터 용매추출과 가수분해를 이용한 니켈분말제조에 관한 연구)

  • Lee, Seokhwan;Chae, Byungman;Lee, Sangwoo;Lee, Seunghwan
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.14-18
    • /
    • 2019
  • In general after the etching process, waste etching solution contains metals. (ex. Nickel (Ni), Chromium (Cr), Zinc (Zn), etc.) In this work, we proposed a recycling process for waste etching solution and refining from waste liquid contained nickel to make nickel metal nano powder. At first, the neutralization agent was experimentally selected through the hydrolysis of impurities such as iron by adjusting the pH. We selected sodium hydroxide solution as a neutralizing agent, and removed impurities such as iron by pH = 4. And then, metal ions (ex. Manganese (Mn) and Zinc (Zn), etc.) remain as impurities were refined by D2EHPA (Di-(2-ethylhexyl) phosphoric acid). The nickel powders were synthesized by liquid phase reduction method with hydrazine ($N_2H_4$) and sodium hydroxide (NaOH). The resulting nickel chloride solution and nickel metal powder has high purity ( > 99%). The purity of nickel chloride solution and nickel nano powders were measured by EDTA (ethylenediaminetetraacetic) titration method with ICP-OES (inductively coupled plasma optical emission spectrometer). FE-SEM (field emission scanning electron microscopy) was used to investigate the morphology, particle size and crystal structure of the nickel metal nano powder. The structural properties of the nickel nano powder were characterized by XRD (X-ray diffraction) and TEM (transmission electron microscopy).

Understanding Chemical Characteristics of Seepage Water and Groundwater in a Coastal LPG Storage Cavern using Factor and Cluster Analyses (인자 및 군집분석을 통한 해안 LPG공동 유출수 및 지하수 수질특성의 이해)

  • Jo, Yun-Ju;Lee, Jin-Yong
    • Economic and Environmental Geology
    • /
    • v.42 no.6
    • /
    • pp.599-608
    • /
    • 2009
  • This study was conducted to examine chemical characteristics and correlations among seepage water, subsurface waters and inland groundwater in and around a coastal underground LPG cavern using factor and cluster analyses. The study area is located in western coast of Incheon metropolitan city and is about 8 km off the coast. The LPG cavern storing propane and butane was built beneath artificially reclaimed island. Mean bathymetry is 8.5 m and maximum sea level change is 10 m. Water sampling was conducted in May and August, 2006 from 22 sampling points. Correlation analysis showed strong correlations among $Fe^{2+}$ and $Mn^{2+}$ (r=0.83~0.99), and Na and Cl (r=0.70~0.97), which indicated reductive dissolution of iron and manganese bearing minerals and seawater ingression effect, respectively. According to factor analysis, Factors 1 (May) and I (August) showed high loadings for parameters representing seawater ingression into the cavern and effect of submarine groundwater discharge, respectively while Factors 2 and IV showed high loadings for those representing oxidation condition (DO and ORP). Factors 4 and II have large positive loadings for $Fe^{2+}$ and $Mn^{2+}$. The increase of $Fe^{2+}$ and $Mn^{2+}$ was related to decomposition of organic matter and subsequent their dissolution under reduced condition. Cluster analysis showed the resulting 6 groups for May and 5 groups for August, which mainly included groups of inland groundwater, cavern seepage water, sea water and subsurface water in the LPG storage cavern. Subsurface water (Group 2 and Group III) around the underground storage cavern showed high EC and major ions contents, which represents the seawater effect. Cavern seepage water (Group 5 and Group II) showed a reduced condition (low DO and negative ORP) and higher levels of $Fe^{2+}$ and $Mn^{2+}$.

Study on Adsorption Characteristics of Arsenic on Magnetite (자철석의 비소에 대한 흡착특성 연구)

  • Jeong, Hyeon-Su;Lee, Woo-Chun;Cho, Hyen-Goo;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.425-434
    • /
    • 2008
  • Arsenic contamination in soil and groundwater has recently been one of the most serious environmental concerns. This arsenic contamination can be originated from natural or anthropogenic sources. It has been well known that arsenic behavior in geo-environmental is controlled by various oxides or hydroxides, such as those of iron, manganese, and aluminum, and clay minerals. Among those, particularly, iron (oxy)hydroxides are the most effective scavengers for arsenic. For this reason, this study characterized arsenic adsorption of magnetite which is a kind of iron oxide in nature. The physicochemcial features of the magnetite were investigated to evaluate adsorption of arsenite [As(III)] and arsenate [As(V)] onto magnetite. In addition to experiments on adsorption equilibria, kinetic experiments were also conducted. The point of zero charge (PZC) and specific surface area of the laboratory-synthesized magnetite used as an arsenic adsorbent were measured 6.56 and $16.6\;g/m^2$, which values seem to be relatively smaller than those of the other iron (oxy)hydroxides. From the results of equilibria experiments, arsenite was much more adsorbed onto magnetite than arsenate, indicating the affinity of arsenite on magnetite is larger than arsenate. Arsenite and arsenate showed adsorption maxima at pHs 7 and 2, respectively. In particular, adsorption of arsenate decreased with increase in pH as a result of electrical repulsion caused by anionic arsenate and negatively-charged surface of magnetite. These results indicate that the surface charge of magnetite and the chemical speciation of arsenic should be considered as the most crucial factors in controlling arsenic. The results of kinetic experiments show that arsenate was adsorbed more quickly than arsenite and adsorption of arsenic was investigated to be mostly completed within the duration of 4 hours, regardless of chemical speciation of arsenic. When the results of kinetic experiments were fitted to a variety of kinetic models proposed so far, power function and elovich model were evaluated to be the most suitable ones which can simulate adsorption kinetics of two kinds of arsenic species onto magnetite.