• Title/Summary/Keyword: Maneuverability Analysis

Search Result 97, Processing Time 0.025 seconds

Analysis Model Development for Designing of Hydraulic Power Steering System (유압식 동력조향 장치 설계를 위한 해석 모델 개발)

  • Jang, Joo-Sup;Yoon, Young-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.158-165
    • /
    • 2008
  • Hydraulic power steering system has been adopted in seniority passenger and commercial vehicle system for an easy maneuverability and a smoother ride. In this study, hydraulic power steering system analysis model which includes hydraulics and mechanical sub-systems was developed using commercial software, AMESim in order to predict characteristics for various steering components. Each component which constructs system was modeled and verified by experimentally obtained characteristics curves of each components. The agreement between simulation and experimental results shows the validity of the simulation model. The parameter sensitivity analysis such as valve opening area, torsional stiffness for system design are carried out by the analysis and experimental method.

Design and Dynamic Analysis of Fish-like Robot;PoTuna

  • Kim, Eun-Jung;Youm, Young-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1580-1586
    • /
    • 2003
  • This paper presents the design and the analysis of a "fish-like underwater robot". In order to develop swimming robot like a real fish, extensive hydrodynamic analysis were made followed by the study of biology of the fishes especially its maneuverability and propel styles. Swimming mode is achieved by mimicking fish-swimming of carangiform. This is the swimming mode of the fast motion using its tail and peduncle for propulsion. In order to generate configurations of vortices that gives efficient propulsion yawing and surging with a caudal fin has applied and in order to submerge and maintain the body balance pitching and heaving motion with a pair of pectoral fin is used. We have derived the equation of motion of PoTuna by two methods. In first method, we use the equation of motion of underwater vehicle with the potential flow theory for the power of propulsion. In second method, we apply the method of the equation of motion of UVM(Underwater Vehicle-Manipulator). Then, we compare these results.

  • PDF

Dynamic Performance Estimation and Optimization for the Power Transmission of a Heavy Duty Vehicle (중부하 차량 동력전달계의 성능평가와 최적화)

  • 조한상;임원식;이장무;김정윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.63-74
    • /
    • 1996
  • Automatic transmission for heavy duty vehicles is a part of the power pack which includes steering and braking systems. This transmission in different from the one for passenger car. Therefore, in order to understand the trend of the important design parameters, maneuverability, acceleration performance and maximum speed, we need to analyze the total performance characteristics of the power transmission systems. In this study, modeling of the automatic transmission in heavy duty vehicle is carried out and the performance analysis method is presented. Results can be used for performance estimation data in the analysis for several combination method which determines the optimal parameters on the basis of penalty functions and weightings. And the estimation method of the important performance parameters such as engine inertia or power loss of engine by experiments is presented.

  • PDF

A Study on the Change of Current in the Vicinity of Mokpo Harbor and Its Impact on Ship Operation due to the Discharge through Yongsan River Estuary Weir and Yongam-Kumho Sea Dike (영산강 하구둑 및 영암-금호방조제의 방류에 의한 목포항 주변수역의 유동변화 및 선박운용에 미치는 영향에 관한 연구)

  • 정대득;이중우;국승기
    • Journal of Korean Port Research
    • /
    • v.13 no.1
    • /
    • pp.133-146
    • /
    • 1999
  • Mokpo coastal area is connected to the adjacent a long river and two large basins. It is essential for port planning coastal zone management and environmental impact study to analyze the data related to the ship operation and variation of current and water quality due to the development of water area including dredging reclamation and estuary barrage. The Yongsan river estuary weir and Yongam-Kumho basins discharge much of water through water gates for the purpose of flood control and prohibit salt intrusion at the inland fresh water area. To meet this purpose discharge through the gates have been done at the period of maximum water level difference between inner river and sea level. This discharged water may cause the changes of current pattern and other environmental influences in the vicinity and inner area of semi-closed Mokpo harbor. In this study ADI method is applied to the governing equation for the analysis of the changes on current pattern due to discharged water. As the results of this study it is known that the discharging operation causes many changes including the increase of current velocity at the front water area at piers approaching passage and anchorages. Discussion made on the point of problems such as restricted maneuverability and the safety of morred vessels at pier and anchorage. To minimize this influence the linked gate operation discharging warning system and laternative mooring system are recommended.

  • PDF

Development of Terrain Analysis S/W for Military Use of DTM (수치지형 자료의 모델링 및 지형분석 S/W의 개발)

  • Mun Seung-Hwan;Choe Byeong-Gyu;Hwang Mun-Ho
    • Journal of the military operations research society of Korea
    • /
    • v.17 no.2
    • /
    • pp.31-43
    • /
    • 1991
  • The fire effectiveness and the operationability of the ground weapon system (such as tank, armored vehicle, howitzer, MLRS, ${\cdots}$), whose operations are usually happened on the ground, are dependent not only on their performances but also on the terrain environments. Especially, the artillery weapons systems' effectiveness is largely varied, because their maneuverability (such as translation, occupation of their sites) and the fire effectiveness are very dependent on the terrain. In this paper, presented are the methods how to analyze the terrain using the digital terrain data. And a software (which are implemented on the IBM PC compatible personal computer) is developed for the analysis of the terrain using the various method of computer Aided Geometric Design and Modeling. The S/W is expected to be very useful for the evaluation of the artillery weapon systems and for the commanders' decision making.

  • PDF

Development of Missile Design Computer Framework for the Multidisciplinary Optimization (유도무기 통합최적화설계를 위한 전산프레임워크 개발연구)

  • Kim Woo-Hyun;Lee Seung-Jin;Lee Jae-Woo;Byun Yung-Hwan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.307-314
    • /
    • 2006
  • Missile system. which requires high speed/high maneuverability is getting more important as a defensive weapon system. Integrated design environment which includes all related resources during the missile development process, is a very useful development tool, Therefor the design framework can perform the operation analysis and utilize design information for the efficient missile design. For this purpose, various analysis computer codes under heterogeneous platforms and operating systems, the database, the optimization module, and Ideas a commercial CAD are integrated using distributed. middleware. and the complicated GUI design has been made for the specific missile system design. Under the various constraint, maximize missile range and loadfactor with missile design computer framework.

  • PDF

Analysis and optimal design of fiber-reinforced composite structures: sail against the wind

  • Nascimbene, R.
    • Wind and Structures
    • /
    • v.16 no.6
    • /
    • pp.541-560
    • /
    • 2013
  • The aim of the paper is to use optimization and advanced numerical computation of a sail fiber-reinforced composite model to increase the performance of a yacht under wind action. Designing a composite-shell system against the wind is a very complex problem, which only in the last two decades has been approached by advanced modeling, optimization and computer fluid dynamics (CFDs) based methods. A sail is a tensile structure hoisted on the rig of a yacht, inflated by wind pressure. Our objective is the multiple criteria optimization of a sail, the engine of a yacht, in order to obtain the maximum thrust force for a given load distribution. We will compute the best possible yarn thickness orientation and distribution in order to minimize the total fiber volume with some displacement constraints and in order to leave the most uniform stress distribution over the whole structure. In this paper our attention will be focused on computer simulation, modeling and optimization of a sail-shape mathematical model in different regatta and wind conditions, with the purpose of improving maneuverability and speed made good.

Modeling & Dynamic Analysis for Four Wheel Steering Vehicles (4WS 차량의 모델링 및 동적 해석)

  • Jang, J.H.;Jeong, W.S.;Han, C.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.66-78
    • /
    • 1995
  • In this paper, we address vehicle modeling and dynamic analysis of four wheel steering systems (4WS). 4WS is one of the devices used for the improvement of vehicle maneuverability and stability. All research done here is based on a production vehicle from a manufacturer. To study actual system response, a three dimensional, full vehicle model was created. In past research of this type, simple, two dimensional, bicycle vehicle models were typically used. First, we modelled and performed a dynamic analysis on a conventional two wheel steering(2WS) vehicle. The modeling and analysis for this model and subsequent 4WS vehicles were performed using ADAMS(Automatic Dynamic Analysis of Mechanical Systems) software. After the original vehicle model was verified with actual experiment results, the rear steering mechanism for the 4WS vehicle was modelled and the rear suspension was changed to McPherson-type forming a four wheel independent suspension system. Three different 4WS systems were analyzed. The first system applied a mechanical linkage between the front and rear steering mechanisms. The second and third systems used, simple control logic based on the speed and yaw rate of the vehicle. 4WS vehicle proved dynamic results through double lane change test.

  • PDF

Remodeling of Hull Form and Calculation of Design Parameters using Cubic Composite Spline (3차 복합 스플라인을 이용한 선형의 리모델링 및 설계 파라메터 계산)

  • Son, Hye-Jong;Kim, Hyun-Cheol
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.6
    • /
    • pp.440-449
    • /
    • 2008
  • This paper deals with a method calculating various hull form parameters which are required in numerical analysis for ship performance such as motion, maneuverability, resistance and propulsion, etc. After the hull form is designed, before the model tests the ship's performances are evaluated by various analysis tools in which the hull form parameters are used with many kinds of forms aside from offset data. Here, The hull form parameters characterize the properties of hull form and contain positional, differential and integral information implicitly. Generally, the commercial CAD-system has not functions enough for supporting these form parameters and therefore each shipyard uses its own in-house analysis program as well as commercial analysis software. To overcome these limitations, modules for supporting these analysis programs have developed. The modules contain cubic composite spline cure using local curve fairing, intersect algorithm, Gaussian integral, and other geometric techniques needed in calculating hull form parameters. Using our analysis-supporting modules, a complex hull form can be remodeled exactly to the hull form designed by CAD-system and any hull form parameter required in various performance analyses can be calculated.

Characteristic Investigation of Design Parameters on the Hydraulic Power Steering Gear Box (유압식 동력 조향기어 박스에서 설계변수의 특성검토)

  • Jang, Joo-Sup;Yoon, Young-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.135-142
    • /
    • 2008
  • Hydraulic power steering system has been adopted in seniority passenger and commercial vehicle system for an easy maneuverability and a smoother ride. In this study, hydraulic power steering system analysis model which includes hydraulics and mechanical sub-systems was developed using commercial software, AMESim in order to predict characteristics for various steering components. Each component which constructs system was modeled and verified by experimentally obtained characteristics curves of each components. The parameter sensitivity analysis such as valve opening area, torsional stiffness of torsion bar for system design are carried out by the analysis and experimental method. The predicted results by the development model were a good agreement with experimentally obtained results. The sensitivity investigation results rotary torque when changing an input shaft edge width, was most sensitive, to change in angle and slot width and supply flow of input shaft edge is not a lot sensitively.