Park, Hyun-Wook;Ryu, Dong-Mok;Lee, Han-Joo;Huh, Won-Shil
Maxillofacial Plastic and Reconstructive Surgery
/
v.21
no.2
/
pp.131-138
/
1999
The purpose of this study is to evaluate the effects of resorbable plate in the healing process of mandibular fracture. Reduction and rigid fixation was carried out on the artificial mandibular fracture site of the rabbits, using a resorbable screw, 1.5mm in diameter and 4.0mm in length, and an absorbable plate 1.5mm in thickness(Lactosorb$^{(R)}$). En block tissue specimens with plate were taken from the rabbits at 4, 6, 8, and 10 weeks intervals and specimen were observed with light microscope under the hematoxylin-eosin staining, to observe the inflammatory reaction and tissue healing process. The following conclusions were drawn: 1. The subject displayed good healing with no signs of detachment of the fixation plate. 2. At 4 weeks, the plate was covered by the connective tissue. Then at 6 weeks, bone regeneration was discovered around the plate. 3. During the period of healing, no inflammatory reaction or foreign body reaction, as a result of using resorbable plate, were observed. 4. At 8 weeks, the initial phase of the absorption of the plate was observed. Then at 10 weeks, macrophage were observed around the plate, indicating the absorption phase was in process. From the above results, it can be determined that when the resorbable plate is applied to rabbit, full recuperation occurs naturally in the absence of inflammatory reaction and foreign body reaction. The selected study is clinically valuable in proving this procedure.
The purpose of this 6-months study was to compare the clinical and radiographic outcomes following guided tissue regeneration treating human mandibular Class II furcation defects with a bioabsorbable BioMesh barrier(test treatment) or a nonabsorbable ePTFE barrier(control treatment). Fourteen defects in 14 patients(mean age 44 years) were treated with BioMesh barriers and ten defects in 10 patients(mean age 48 years) with ePTFE barriers. After initial therapy, a GTR procedure was done. Following flap elevation, root planing, and removal of granulation tissue, each device was adjusted to cover the furcation defect. The flaps were repositioned and sutured to complete coverage of the barriers. A second surgical procedure was performed at control sites after 4 to 6 weeks to remove the nonresorbable barrier. Radiographic and clinical examinations(plaque index, gingival index, tooth mobility, gingival margin position, pocket depth, clinical attachment level) were carried out under standardized conditions immediately before and 6 months after surgery. Furthermore, digital subtraction radiography was carried out. All areas healed uneventfully. Surgical treatment resulted in clinically and statistically equivalent changes when comparisons were made between test and control treatments. Changes in plaque index were 0.7 for test and 0.4 for control treatments; changes in gingival index were 0.9 and 0.5. In both group gingival margin position and pocket depth reduction was 1.0mm and 3.0mm; clinical attachment level gain was 1.9mm. There were no changes in tooth mobility and the bone in radiographic evaluation. No significant(p${\leq }$0.05) difference between the two membranes could be detected with regard to plaque index, gingival index, gingival margin position, pocket depth, and clinical attachment level. In conclusion, a bioabsorbable BioMesh membrane is effective in human mandibular Class II furcation defects and a longer period study is needed to fully evaluate the outcomes.
Background: The aim of this study was to evaluate the effect of autogenous tooth bone as a graft material for regeneration of bone in vertical bony defects of the minipigs. Material and Methods: Six minipigs were used in this study. Four molars were extracted in the right mandibular dentition and sent to the Korea Tooth Bank for fabrication of autogenous tooth bone. Ten days later, each extraction site was implanted with MS Implant Narrow Ridge $3.0{\times}10mm$ fixture (Osstem, Seoul, Korea) after standardized 2mm-sized artificial vertical bony defect formation. Pineappleshaped Root-On type autogenous tooth bones were applied to the vertical defects around the neck area of the posterior three fixtures and the fore-most one was not applied with autogenous bone as a control group. Each minipig was sacrificed at 4, 8, 12 weeks after fixture installation and examined radiologically and histologically. Histological evaluation was done under light microscope with Villanueva osteochrome bone staining with semi-quantitative histomorphometric study. Percentage of new bone over total area (NBF) and bone to implant contact (BIC) ratio were evaluated using digital software for area calculation. Result: NBF were $48.15{\pm}18.02%$, $45.50{\pm}28.37%$, and $77.13{\pm}15.30%$ in 4, 8, and 12 weeks, respectively for experimental groups. The control group showed $37.00{\pm}11.53%$, $32.25{\pm}26.99%$, and $1.33{\pm}2.31%$ in 4,8,12 weeks, respectively. BIC ratio were $53.08{\pm}19.82%$, $45.00{\pm}28.37%$, and $75.13{\pm}16.55%$ in 4,8,12 weeks, respectively. Those for the control groups were $38.33{\pm}6.43%$, $33.50{\pm}29.51%$, and $1.33{\pm}2.31%$ in 4, 8, 12 weeks, respectively. Conclusion: Autogenous tooth bone showed higher score than control group in NBF and BIC in all the data encompassing 4,8,12 weeks specimens, but statistically significant only 12 weeks data in both NBF and BIC.
Purpose: Osteopontin is one of the major non-collagenous protein of hard tissue. Use of peptide domain of biologically active protein has some advantages. The objective of this experimental study is evaluation of periodontal regenerative potency of synthetic peptide gel which containing collagen binding domain of osteopontin in the degree III periodontal defect of beagle dogs. Material and Methods: Experimental degree III furcation defect was made in the mandibular third and fourth premolar of beagles. Regenerative material was applied during flap operation. 8 weeks after regenerative surgery, all animals were sacrificed and histomorphometric measurement was performed to calculate the linear percentage of the new cementum formation and the volume percentage of new bone formation. Result: The linear percent of new cementum formation was 41.6% at control group and 67.1% at test group and there was statistically significant difference. The volume percent of new bone formation was 52.1% at control group and 58.9% at test group. Conclusion: As the results of present experiment, synthetic peptide gel containing collagen binding domain of osteopontin significantly increase new bone and cementum formation in the degree III furcation defect of canine mandible.
Purpose: The present study investigated the impact of 2 different suture techniques, the conventional crossed mattress suture (X suture) and the novel hidden X suture, for alveolar ridge preservation (ARP) with an open healing approach. Methods: This study was a prospective randomized controlled clinical trial. Fourteen patients requiring extraction of the maxillary or mandibular posterior teeth were enrolled and allocated into 2 groups. After extraction, demineralized bovine bone matrix mixed with 10% collagen (DBBM-C) was grafted and the socket was covered by porcine collagen membrane in a double-layer fashion. No attempt to obtain primary closure was made. The hidden X suture and conventional X suture techniques were performed in the test and control groups, respectively. Cone-beam computed tomographic (CBCT) images were taken immediately after the graft procedure and before implant surgery 4 months later. Additionally, the change in the mucogingival junction (MGJ) position was measured and was compared after extraction, after suturing, and 4 months after the operation. Results: All sites healed without any complications. Clinical evaluations showed that the MGJ line shifted to the lingual side immediately after the application of the X suture by $1.56{\pm}0.90mm$ in the control group, while the application of the hidden X suture rather pushed the MGJ line slightly to the buccal side by $0.25{\pm}0.66mm$. It was demonstrated that the amount of keratinized tissue (KT) preserved on the buccal side was significantly greater in the hidden X suture group 4 months after the procedure (P<0.05). Radiographic analysis showed that the hidden X suture had a significant effect in preserving horizontal width and minimizing vertical reduction in comparison to X suture (P<0.05). Conclusions: Our study provided clinical and radiographic verification of the efficacy of the hidden X suture in preserving the width of KT and the dimensions of the alveolar ridge after ARP.
There has been many attempts to develop a method that can regenerate periodontal tissues that were lost due to periodontal diseasd, but none of them was completely successful. This study was designed to investigate the healing and regeneration of periodontal tissue when bone substitutes such as porous replamineform hydroxyapatite and porous resorbable calcium carbonate were used in combination with oxidized cellulose membrane and collagen absorbable hemostat, compared to a control where only oxidized cellulose membrane or collagen absorbable hemostat were used. Chronic periodontitis was induced on mandibular premolars of and adult dog by placing orthodontic elastic ligatures for 10 weeks. After flap operation, the control group were received oxidized cellulose membrane (control- I )or collagen absorbable hemostat (control- II) only, while one experimental group was given either porous replamineform hydroxyapatite or porous resorbable calcium carbonate in addition to oxidized cellulose membrane (Experimental I-A, I-B), and another experimental group was treated by using either porous replamineform hydroxyapatite or porous resorbable calcium carbonate in addition to collagen absorbable hemostat. (Experimental II-A, II-B) After 56 weeks, healing was histologically analyzed with the following results. 1. Apical migration of junctional epithelium was observed only in areas coronal to the notch for both control and experimental group. 2. Inflammatory cell infiltration was not observed in any groups. 3. Oxidized cellulose membrane and collagen absorbable hemostat were completely resorbed. 4. Newly-formed cementum was observed up to the level where junctional epithelium was located, for both control and experimental groups. 5. Bone formation was limited of the middle portion of the notch in the control group, where as experimental groups showed bone formation up to the level of implant materials coronal to the notch. 6. Minute resorption of apically located portions of implanted materials was observed in experimental group I-B and II-B only.
New techniques for regenerating the destructed periodontal tissue have been studied for many years. Current acceptable methods of promoting periodontal regeneration alre basis of removal of diseased soft tissue, root treatment, guided tissue regeneration, graft materials, biological mediators. Platelet-derived growth factor (PDGF) is one of polypeptide growth factor. PDGF have been reported as a biological mediator which regulate activities of wound healing progress including cell proliferation, migration, and metabolism. The purposes of this study is to evaluate the possibility of using the PDGF as a regeneration promoting agent for furcation involvement defect. Eight adult mongrel dogs were used in this experiment. The dogs were anesthetized with Pentobarbital Sodium (25-30 mg/kg of body weight, Tokyo chemical Co., Japan) and conventional periodontal prophylaxis were performed with ultrasonic scaler. With intrasulcular and crestal incision, mucoperiosteal flap was elevated. Following decortication with 1/2 high speed round bur, degree III furcation defect was made on mandibular second(P2) and fourth(P4) premolar. For the basic treatment of root surface, fully saturated citric acid was applied on the exposed root surface for 3 minutes. On the right P4 20ug of human recombinant PDGF-BB dissolved in acetic acid was applied with polypropylene autopipette. On the left P2 and right P2 PDGF-BB was applied after insertion of ${\beta}-Tricalcium$ phosphate(TCP) and collagen (Collatape) respectively. Left mandibular P4 was used as control. Systemic antibiotics (Penicillin-G benzathine and penicillin-G procaine, 1 ml per 10-25 1bs body weight) were administrated intramuscular for 2 weeks after surgery. Irrigation with 0.1% Chlorhexidine Gluconate around operated sites was performed during the whole experimental period except one day immediate after surgery. Soft diets were fed through the whole experiment period. After 2, 4, 8, 12 weeks, the animals were sacrificed by perfusion technique. Tissue block was excised including the tooth and prepared for light microscope with H-E staining. At 2 weeks after surgery, therer were rapid osteogenesis phenomenon on the defected area of the PDGF only treated group and early trabeculation pattern was made with new osteoid tissue produced by activated osteoblast. Bone formation was almost completed to the fornix of furcation by 8 weeks after surgery. New cementum fromation was observed from 2 weeks after surgery, and the thickness was increased until 8 weeks with typical Sharpey’s fibers reembedded into new bone and cementum. In both PDGF-BB with TCP group and PDGF-BB with Collagen group, regeneration process including new bone and new cementum formation and the group especially in the early weeks. It might be thought that the migration of actively proliferating cells was prohibited by the graft materials. In conclusion, platelet-derived growth factor can promote rapid osteogenesis during early stage of periodontal tissue regeneration.
Purpose: In dental clinical fields, various periodontal membranes are currently used for periodontal regeneration. The periodontal membranes are categorized into two basic types: resorbable and non-resorbable. According to the case, clinician select which membrane is used. Comparing different membranes that are generally used in clinic is meaningful. For this purpose, this study evaluates histological effects of various membranes in canine one wall intrabony defect models and it suggest a valuation basis about study model. Material and Method: The membranes were non-resorbable TefGen $Plus^{(R)}$, resorbable Gore Resolut $XT^{(R)}$ and resorbable $Osteoguide^{(R)}$. One wall intrabony defects were surgically created at the second and the mesial aspect of the fourth mandibular premolars in either right or left jaw quadrants in two dogs. The animals were euthanized 8 weeks post-surgery when block sections of the defect sites were collected and prepared for histological evaluation. Results: 1. While infiltration of inflammatory cells were observed in control, TefGen $Plus^{(R)}$ and Gore Resolut $XT^{(R)}$, it was not observed in $Osteoguide^{(R)}$. 2. TefGen $Plus^{(R)}$ had higher integrity than others and $Osteoguide^{(R)}$ was absorbed with folding shape. Gore Resolut $XT^{(R)}$ was divided everal parts during resorbtion and it was also absorbed from inside. 3. Quantity of new bone and new cementum was not abundant in all membranes. 4. For histologic evaluation of membranes we should consider infiltration of inflammatory, migration of junctional epithelium, integrity of membrane, quantity of new bone and new cementum, connective tissue formation and aspect of resorption. Conclusion: This histologic evaluation suggests that $Osteoguide^{(R)}$ provides periodontal regenerative environment with less inflammatory state. It is meangful that this study model suggests a valuation basis about other study model.
The purpose of this study was to evaluate histomorphometrically a toothash - plaster of Paris mixture associated with collagen membrane ($Bio-Gide^{(R)}$), regarding new bone formation in the peri-implantitis defects in dogs. Three mandibular molars were removed from 1-year-old mongrel dogs. After 2 months of healing, 2 titanium implants with sandblasted with large grit and acid etched (SLA) surface were installed in each side of the mandible. Experimental peri-implantitis was induced with ligatures after successful osseointegration. Ligatures were removed after identification of bone defect beneath the level of 5th thread of fixture on radiographic image. The mucoperiosteal flaps were elevated and the contaminated fixtures were treated with chlorhexidine and saline. The bone defects were assigned to one of the following treatments: no guided bone regeneration (GBR) procedure (group 1), GBR with Bio-$Oss^{(R)}$ and Bio-$Gide^{(R)}$ (group 2), or GBR with toothash - plaster of Paris mixture (TPM) and Bio-$Gide^{(R)}$ (group 3). The dogs were sacrificed after 8 or 16 months. The mean percentages of new bone formation within the limits of the 5 most coronal threads were $17.83{\pm}10.69$ (8 weeks) and $20.13{\pm}13.65$ (16 weeks) in group 1, $34.25{\pm}13.32$ (8 weeks) and $36.33{\pm}14.21$ (16 weeks) in group 2, and $46.33{\pm}18.39$ (8 weeks) and $48.00{\pm}17.78$ (16 weeks) in group 3, respectively. The present study confirmed statistically considerable new bone formation within the threads in group 3 compared with group 1 at 8 and 16 weeks (P<0.05). Although, data analysis did not reveal significant differences between group 2 and 3, the latter showed better results during the period of 8 or 16 weeks. Our findings support the effectiveness of TPM as a GBR material in the treatment of peri-implantitis bone defect.
In case of gingival recession or bone defect in maxillary anterior implant treatment, it is not easy to obtain satisfactory clinical results. In this case, loss of the labial alveolar plate was diagnosed in the maxillary right central incisor, so after tooth extraction, soft tissue was secured and implant placement with bone graft was planned. In addition, digital guide surgery was performed for the ideal implant position, and GBR (Guided Bone Regeneration) was accompanied with the xenogeneic bone and the autologous bone collected from the mandibular ramus since alveolar bone defects were extensive. After a sufficient period of osseointegration of the implant, a temporary prosthesis was fabricated through secondary stage surgery and impression taking, and through periodic external adjustment, the shape of soft tissue was improved. In the final prosthesis fabrication, a color tone of natural teeth was induced by an gold anodized customized abutment, and an aesthetic and functional zirconia prosthesis with reproducing the shape of the temporary prosthesis through intraoral scan was delivered.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.