• 제목/요약/키워드: Mandibular bone regeneration

검색결과 116건 처리시간 0.023초

Bone remodeling of the fibula segment as a form of neocondyle after free vascularized bone transfer: a report of two cases

  • Han Ick Park;Hoon Je Chang;Jee-Ho Lee
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제49권6호
    • /
    • pp.354-359
    • /
    • 2023
  • The temporomandibular joint is a unique structure composed of the joint capsule, articular disc, mandibular condyles, glenoid fossa of the temporal bone, surrounding ligaments, and associated muscles. The condyle is one of the major components of a functional temporomandibular joint. Reconstruction of large mandibular defects involving the condyle is a surgical challenge for oral and maxillofacial surgeons. To restore large mandibular defects, there are different options for free flap method such as fibula, scapula, and iliac crest. Currently, the vascularized fibula free flap is the gold standard for reconstruction of complex mandibular defects involving the condyle. In the present report, neocondyle regeneration after mandible reconstruction including the condyle head with fibula free flap was evaluated. In this report, two patients were evaluated periodically, and remodeling of the distal end of the free fibula was observed in both cases after condylectomy or mandibulectomy. With preservation of the articular disc, trapezoidal shaping of the neocondyle, and elastic guidance of occlusion, neocondyle bone regeneration occured without ankylosis. Preservation of the articular disc and maintenance of proper occlusion are critical factors in regeneration of the neocondyle after mandible reconstruction.

한국인 하악 유합부에서의 피질골-해면골의 밀도 및 형태 (Quality and Morphology on cortico-cancellous bone in Korean mandibular symphysis area)

  • 민천기;박현도;김창성;정한성;조규성;김희진;최성호
    • Journal of Periodontal and Implant Science
    • /
    • 제31권3호
    • /
    • pp.581-595
    • /
    • 2001
  • In performing implant procedures in the anterior portion of the maxilla, many difficulties exist because of anatomical reasons, such as the proximity of the nasal floor, lateral extension of the incisive canal, and labial concavity. On the other hand, in the posterior region of the maxilla, there is often insufficient recipient bone between the maxillary sinus and alveolar ridge due to alveolar ridge resorption and pneumatization of the maxillary sinus. In order to perform implants in such regions, ridge augmentation procedures such as onlay bone graft, guided bone regeneration, and maxillary sinus grafting are performed. In studies of Caucasians, use of autograft from mandibular symphysis has been reported to be highly successful in maxillary sinus grafting. However, in a clinical study of Koreans, autograft of mandibular symphysis has been reported to have significantly low success rate. It has been hypothesized that this is because of insufficient cancellous bone due to thick cortical bone. In order to test this hypothesis, bone quality and morphology of Koreans can be compared with those of Caucasians. In this study, the bone density and morphology of the cortical bone and cancellous bone in the mandibular symphysis of 35 Korean cadavers were evaluated. The following results were obtained: 1. In terms of bone density, type I, type II, and type III consisted of 1.4%(3/213), 72.3%(154/213), and 26.3%(56/213) of the cross-sectioned specimens, respectively. In general, the bone density tended to change from type II to type III, as cross-sectioned specimens were evaluated from the midline to the canine. Type IV wasn't observed in this study. 2. The distance between the root apex and the lower border of the cancellous bone was 18.34mm-20.59mm. Considering that the bone has to be cut 5mm below the root apex during the procedure, autografts with about 15mm of vertical thickness can be obtained. 3. The thickness of cortical bone on the labial side increased from the root apex to the lower border of the mandible. The average values ranged from 1.43mm to 2.36mm. 4. The labio-lingual thickness of cancellous bone ranged from 3.43mm to 6.51mm. The thickness tended to increase from the apex to the lower border of the mandible and decrease around the lower border of cancellous bone. From the above results, the anatomic factors of the mandibular symphysis (bone density, thickness, quantity and length of the cortical bone and cancellous bone) didn't show any difference from Caucasians, and it cannot be viewed as the cause of failure in autografts in the maxillary sinus for implants.

  • PDF

생체요업재료와 차폐막의 복합사용후 골연하 결손부의 재생효과 (Effect Of Bioceramic Grafts With And Without eptfe Membrane In Periodontal Osseous Defects In Dogs)

  • 이인경;이기영;한수부;고재승;조정식
    • Journal of Periodontal and Implant Science
    • /
    • 제26권1호
    • /
    • pp.47-67
    • /
    • 1996
  • The purpose of this study was to observe the effect of $Biocoral^R$ graft and bioglass 45S5 graft in combination with ePTFE membrane in periodontal osseous defects for new bone formation. Nine healthy dogs were used. Under general anesthesia, 3-wall defects were created on the mesial and distal surfaces of the maxillary right canines, the mesials of the maxillary right second premolars, the distals of the mandibular right canines and the mesials of the mandibular right third premolars. To induce periodontitis, a silicone rubber, $Provil^R$ light body, was injected under pressure into the defects. Ninety days later, $Provil^R$was removed and followed by thorough root planing. The followings were then applied in the mesial and distal defects of the maxillary right canines, the mesials of the maxillary right second premolars, the distals of the mandibular right canines and the mesials of the mandibular right third premolars by random selections : 1) ePTFE membrane only application, 2) $Biocoral^R$ graft, 3) $Biocoral^R$ graft and ePTFE membrane application, 4)Bioglass 45S5 graft, 5) Bioglass 45S5 graft and ePTFE membrane application. The membranes were removed 1 month later. The dogs were sacrified at 1, 2 and 3 months following the graft, and block sections were made, demineralized, embedded, stained and examined by light microscope and transmission electron microscope. On the sections from teeth treated with ePTFE membrane only, the defect demonstrated extensive connnective tissue and alveolar bone regeneration. The $Biocoral^R$ graft group demonstrated extensive bone regeneration compared with ePTFE membrane only group. In the $Biocoral^R$ graft plus ePTFE membrane group, regeneration of new alveolus and crest occurred within the defect. As the experimental period lengthened, bone regeneration was increased and bone bridge was formed among the graft particles. The but bioglass 45S5 graft group demonstrated extensive bone regeneration but the amount of new bone was less than that of the $Biocoral^R$ graft group. For the bioglass 45S5 graft plus ePTFE membrane group, the amount of new bone was also increased. As the experimental period lengthened, bone regeneration was increased. Multinucleated giant cells, fibroblasts and macrophages were observed. As the bone formation was increased, the number of such cells was decreased. In conclusion, the $Biocoral^R$ was found better than the bioglass 45S5 for new bone formation, and the use of ePTFE membrane alone or with $Biocoral^R$/bioglass 45S5 can be supported as potential methods of promoting bone formation.

  • PDF

Does platelet-rich fibrin increase bone regeneration in mandibular third molar extraction sockets?

  • Azuka Raphael, Njokanma;Olawunmi Adedoyin, Fatusi;Olufemi Kolawole, Ogundipe;Olujide Olusesan, Arije;Ayodele Gbenga, Akomolafe;Olasunkanmi Funmilola, Kuye
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제48권6호
    • /
    • pp.371-381
    • /
    • 2022
  • Objectives: This study determined the effect of platelet-rich fibrin (PRF) on extraction socket bone regeneration and assessed the patterns and determinants of bone regeneration after the surgical extraction of impacted mandibular third molars. Materials and Methods: This prospective study randomly allocated 90 patients into two treatment groups: A PRF group (intervention group) and a non-PRF group (control group). After surgical extractions, the PRF group had PRF placed in the extraction socket and the socket was sutured, while the socket was only sutured in the non-PRF group. At postoperative weeks 1, 4, 8, and 12, periapical radiographs were obtained and HLImage software was used to determine the region of newly formed bone (RNFB) and the pattern of bone formation. The determinants of bone regeneration were assessed. Statistical significance was set at P<0.05. Results: The percentage RNFB (RNFB%) was not significantly higher in the PRF group when compared with the non-PRF group at postoperative weeks 1, 4, 8, and 12 (P=0.188, 0.155, 0.132, and 0.219, respectively). Within the non-PRF group, the middle third consistently exhibited the highest bone formation while the least amount of bone formation was consistently observed in the cervical third. In the PRF group, the middle third had the highest bone formation, while bone formation at the apical third was smaller compared to the cervical third at the 8th week with this difference widening at the 12th week. The sex of the patient, type of impaction, and duration of surgery was significantly associated with percentage bone formation (P=0.041, 0.043, and 0.018, respectively). Conclusion: Placement of PRF in extraction sockets increased socket bone regeneration. However, this finding was not statistically significant. The patient's sex, type of impaction, and duration of surgery significantly influenced the percentage of bone formation.

Are critical size bone notch defects possible in the rabbit mandible?

  • Carlisle, Patricia L.;Guda, Teja;Silliman, David T.;Hale, Robert G.;Baer, Pamela R. Brown
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제45권2호
    • /
    • pp.97-107
    • /
    • 2019
  • Objectives: Small animal maxillofacial models, such as non-segmental critical size defects (CSDs) in the rabbit mandible, need to be standardized for use as preclinical models of bone regeneration to mimic clinical conditions such as maxillofacial trauma. The objective of this study is the establishment of a mechanically competent CSD model in the rabbit mandible to allow standardized evaluation of bone regeneration therapies. Materials and Methods: Three sizes of bony defect were generated in the mandibular body of rabbit hemi-mandibles: $12mm{\times}5mm$, $12mm{\times}8mm$, and $15mm{\times}10mm$. The hemi-mandibles were tested to failure in 3-point flexure. The $12mm{\times}5mm$ defect was then chosen for the defect size created in the mandibles of 26 rabbits with or without cautery of the defect margins and bone regeneration was assessed after 6 and 12 weeks. Regenerated bone density and volume were evaluated using radiography, micro-computed tomography, and histology. Results: Flexural strength of the $12mm{\times}5mm$ defect was similar to its contralateral; whereas the $12mm{\times}8mm$ and $15mm{\times}10mm$ groups carried significantly less load than their respective contralaterals (P<0.05). This demonstrated that the $12mm{\times}5mm$ defect did not significantly compromise mandibular mechanical integrity. Significantly less (P<0.05) bone was regenerated at 6 weeks in cauterized defect margins compared to controls without cautery. After 12 weeks, the bone volume of the group with cautery increased to that of the control without cautery after 6 weeks. Conclusion: An empty defect size of $12mm{\times}5mm$ in the rabbit mandibular model maintains sufficient mechanical stability to not require additional stabilization. However, this defect size allows for bone regeneration across the defect. Cautery of the defect only delays regeneration by 6 weeks suggesting that the performance of bone graft materials in mandibular defects of this size should be considered with caution.

Vertical distraction osteogenesis of a reconstructed mandible with a free vascularized fibula flap: a report of two cases

  • Saito, Naoaki;Funayama, Akinori;Arai, Yoshiaki;Suda, Daisuke;Takata, Yoshiyuki;Kobayashi, Tadaharu
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제40권
    • /
    • pp.32.1-32.8
    • /
    • 2018
  • Background: The free vascularized fibula flap presents many advantages such as sufficient length of the bony segment, good vascularization, better quality of the bone, and a long vascular pedicle, but it is also associated with some disadvantages with regard to prosthetic rehabilitation because of its limited height. Improvement in bone height is necessary for ideal dental implant treatment of reconstructed mandibles. Case presentation: For two squamous cell carcinoma patients, mandibular bone reconstruction was performed secondarily with the peroneal flap after tumor resection. Since the bone height was insufficient at the time of implant treatment, occlusion reconstruction by dental implant was performed after vertical distraction osteogenesis. Conclusions: Vertical distraction osteogenesis is a suitable treatment option for alveolar ridge deficiency resulting from fibula transplantation for mandibular reconstruction following tumor surgery.

심하게 결손된 하악 치조골에서 골유도재생술(GBR) 후 임플란트의 식립: 증례보고 (Implant placement after guided bone regeneration (GBR) in severe defected mandibular alveolar ridge: case report)

  • 지영덕;유태훈
    • 구강회복응용과학지
    • /
    • 제30권2호
    • /
    • pp.184-191
    • /
    • 2014
  • 하악 구치부에 있어서 치조제 결손은 임플란트 치과학에 있어서 큰 장애물이라 할 수 있다. 이러한 치조제를 재건하는데 있어서 여러 가지 술식이 활용되고 있다. 술식들의 선택 및 필요성은 현저한 질병의 이환률과 관련이 있으며, 2차적인 수술 부위를 요구하는 경우도 있다. 골 유도 재생술(GBR, guided bone generation)의 발전은 결손이 존재하는 치조제의 이환률을 낮추며, 2차적인 수술 부위를 요구하지 않는 경우로 볼 수 있다. 본 증례에서는 심하게 결손된 하악 치조골에 자가골을 제외한 동종골, 이종골, 합성골 입자형 골이식재를 조합하여 골 유도 재생술(GBR)을 진행한 후에 임플란트를 성공적으로 식립을 하였다. 두 증례에서 양호한 식립을 보였음에 보고하는 바이다.

골 재생을 위한 생물학적 유도막 (BIOLOGIGIC MEMBRANE FOR GUIDED BONE REGENERATION)

  • 홍종락;강나라;정필훈
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제30권1호
    • /
    • pp.17-24
    • /
    • 2004
  • The purpose of this study was to evaluate the stability and efficacy of biologic membrane made of freeze-dried cartilage as a barrier to facilitate guided bone regeneration in experimental non-healing bone defects in the rat mandible. Nine adult Sprague-Dawley rats (400-500g) were used in experiment. 5.0mm in diameter were created on the mandibular angle area by means of slow-speed trephine drill. In microscopic examination, dynamic immature bone forming at 2 weeks and its calcification at 4 weeks were observed. The membrane made of lyophilized cartilage taken from human costal cartilage seems to be very effective for guided bone regeneration as a biologic membrane and the scaffold for attachment of cells or local drug delivery system of growth factor, which may meet the ideal requirement of a barrier membrane and graft materials.

골결손부에서 Bioactive glass와 차폐막의 골재생 효과 (THE EFFECT OF BIOACTIVE GLASS AND A RESORBABLE MEMBRANE ON B ONE REGENERATION OF THE MANDIBULAR BONE DEFECTS IN RABBIT)

  • 유선열;박세찬;윤천주
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제26권6호
    • /
    • pp.613-619
    • /
    • 2000
  • The purpose of the present study was to investigate the effect of Bioactive glass on bone regeneration in the experimental mandibular bone defects. Five rabbits, weighing about 2.0kg, were used. Three artificial bone defects, $5{\times}5{\times}5mm$ in size, were made at the inferior border of the mandible. In the experimental group 1, the bone defect was grafted with $Biogran^{(R)}$ and covered with $Bio-Gide^{(R)}$ resorbable membrane. In the experimental group 2, $Biogran^{(R)}$ was grafted only. In the control group, the bone defect was filled with blood clot and was spontaneously healed. The animals were sacrificed at 1, 2, 4, and 8 weeks after the graft. Microscopic examination was performed. Results obtained were as follows: In the control group, the osteoid tissue was observed at week 1 and the bone trabeculi were connected each other and matured at week 2. The lamellar bone formation appeared at week 4, and the amount of bone tissue was increased at week 8. In the experimental group 1, the fibrous tissue was filled between the granules of Bioactive glass and the cartilage formation was found adjacent to the normal bone at week 1. The bone tissue was formed between the granules at week 2, while the amount of bone tissue increased and the lamellar bone formation was observed at week 4. The lamellar bone was increased at week 8. Histologic findings were Similar between the experimental groups 1 and 2, although the amount of Bioactive glass granules lost was increased in the latter. These results suggest that new bone formation is found around the Bioactive glass granules grafted into the bone defects, and the membrane plays a role in keeping the granules and preventing the fibrous tissue invasion.

  • PDF

치과용 임플란트 주위 열손 결손에 대한 차폐막의 유도조직재생에 관한 연구 (Guided tissue regeneration using barrier membranes on the dehiscence defects adjacent to the dental implants)

  • 이동호;최상묵
    • Journal of Periodontal and Implant Science
    • /
    • 제25권2호
    • /
    • pp.301-320
    • /
    • 1995
  • The purpose of this study was to evaluate a new biodegradable membrane - atelocollagen as a guided tissue regeneration barrier on the dehiscence defects adjacent to the dental implants. 3 beagle dogs were selected for this study and all the mandibular premolars($P_1,P_2,P_3&P_4$) were extracted. Twelve weeks after the extraction, the edentulous ridges were formed to be placed the titanium plasma-sprayed IMZ implants. Four implant osteotomies were performed on each side of the mandible. The osteotomies were placed facially in the edentulous ridges to approximate an actual dehiscence defect as closely as possible, The standardized dehiscence defects were created 3 mm in width and 4 mm in height by osteotomy. A total 24 implants were placed. e-PTFE, ateloco11agen and $Collatape^{(R)}$ were placed to cover the defects and the one defect served as a control, not covered any membrane. By random selection, three dogs were sacrificed at 2 weeks, 4weeks and 8 weeks after fixation with 3% glutaraldehyde. A week before sacrificing, 8-week dog was infused intravenously with oxy-tetracycline 30mg/kg. The left mandibular blocks were used for full decalcified histologic preparation and the right mandibular blocks were selected for undeca1cified preparation, At 2 weeks, the regenerated bone of e-PTFE and atelocollagen groups appeared to be more dense than other groups and the percentage of bone defect fill was highest for e-PTFE and follwed by ateloco1lagen group. However, the $Collatape^{(R)}$ and control groups showed a little new bone formation. $Collatape^{(R)}$ was almost degraded within 2 weeks. At 4 weeks, the regenerated new bone were much greater and denser than at 2 weeks for e-PTFE and ateloco11agen group. Although a part of atelocollagen bagan to be degraded at the margin and surrounded by foreign body giant cells related to foreign body reaction, it was generally intact and the regenerated new bone was shown much more than at 2 weeks. The amount of new bone in $Collatape^{(R)}$ and control groups at 4 weeks were similar to that of 2 weeks group. At 8 weeks, the regenerated bone was matured and observed along the implant fixture. Direct new bone formation and calcium deposits beneath the e-PTFE were observed. No further bone growth was seen in the $Collatape^{(R)}$ and control groups. In reflected fluoromicrcocopic observation, the osteogenic activity was pronounced between e-PTFE membrane and the old bone. High osteogenic activity was also observed in atelocol1agen group. This study suggested that the ateloco11agen as well as e-PTFE could be used for guided tissue regeneration on dehiscence defects adjacent to the dental implants. But the $Collatape^{(R)}$ was completely resorbed within 2 weeks and was not a suitable membrane for guided bone regeneration.

  • PDF