• Title/Summary/Keyword: Mandibular Molar

Search Result 885, Processing Time 0.033 seconds

Finite Element Stress Analysis of Implant Prosthesis according to Position and Direction of Load (하중의 위치 및 경사에 따른 임플랜트 보철의 유한요소법적 응력분석)

  • Bae, Sook-Jin;Chung, Chae-Heon;Jeong, Seung-Mi
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.4
    • /
    • pp.257-268
    • /
    • 2003
  • The purpose of this study was to assess the loading distributing characteristics of implant prosthesis according to position and direction of load, under vertical and inclined loading using FEA analysis. The finite element model was designed according to standard fixture (4.1mm restorative component x 11.5mm length). The crown for mandibular first molar was made using UCLA abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone. This study simulated loads of 200N at the central fossa in a vertical direction (loading condition A), 200N at the outside point of the central fossa with resin filling into screw hole in a vertical direction (loading condition B), 200N at the centric usp in a $15^{\circ}$ inward oblique direction (loading condition C), 200N at the in a $30^{\circ}$ inward oblique direction (loading condition D) or 200N at the centric cusp in a $30^{\circ}$ outward oblique direction (loading condition E) individually. Von Mises stresses were recorded and compared in the supporting bone, fixture, and abutment screw. The following results have been made based on this study: 1. Stresses were concentrated mainly at the ridge crest around implant in both vertical and oblique loading but stresses in the cancellous bone were low in both vertical and oblique loading. 2. Bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. The magnitude of the stress was greater with the oblique loading than with the vertical loading. 3. An offset of the vertical occlusal force in the buccolingual direction relative to the implant axis gave rise to increased bending of the implant. 4. The relative positions of the resultant line of force from occlusal contact and the center of rotation seems to be more important. 5. The magnitude of the stress in the supporting bone, fixture and abutment screw was greater with the outward oblique loading than with the inward oblique loading and was the greatest under loading at the centric cusp in a $30^{\circ}$ outward oblique direction. Conclusively, this study provides evidence that bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. But it seems to be more important that how long is the distance from center of rotation of the implant itself to the resultant line of force from occlusal contact(leverage). The goal of improving implants should be to avoid bending of the implant.

Finite Element Stress Analysis of Implant Prosthesis of Internal Connection System According to Position and Direction of Load (임플랜트-지대주의 내측연결 시스템에서 하중의 위치 및 경사에 따른 임플랜트 보철의 유한요소 응력분석)

  • Jang, Jong-Seok;Jeong, Yong-Tae;Chung, Chae-Heon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.1
    • /
    • pp.1-14
    • /
    • 2005
  • The purpose of this study was to assess the loading distributing characteristics of implant prosthesis of internal connection system(ITI system) according to position and direction of load, under vertical and inclined loading using finite element analysis (FEA). The finite element model of a synOcta implant and a solid abutment with $8^{\circ}$ internal conical joint used by the ITI implant was constructed. The gold crown for mandibular first molar was made on solid abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone. This study simulated loads of 200N at the central fossa in a vertical direction (loading condition A), 200N at the outside point of the central fossa with resin filling into screw hole in a vertical direction (loading condition B), 200N at the centric cusp in a $15^{\circ}$ inward oblique direction (loading condition C), 200N at the in a $30^{\circ}$ inward oblique direction (loading condition D) or 200N at the centric cusp in a $30^{\circ}$ outward oblique direction (loading condition E) individually. Von Mises stresses were recorded and compared in the supporting bone, fixture, and abutment. The following results have been made based on this study: 1. Stresses were concentrated mainly at the ridge crest around implant under both vertical and oblique loading but stresses in the cancellous bone were low under both vertical and oblique loading. 2. Bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. The magnitude of the stress was greater with the oblique loading than with the vertical loading. 3. An offset of the vertical occlusal force in the buccolingual direction relative to the implant axis gave rise to increased bending of the implant. So, the relative positions of the resultant line of force from occlusal contact and the center of rotation seems to be more important. 4. In this internal conical joint, vertical and oblique loads were resisted mainly by the implant-abutment joint at the screw level and by the implant collar. Conclusively, It seems to be more important that how long the distance is from center of rotation of the implant itself to the resultant line of force from occlusal contact (leverage). In a morse taper implant, vertical and oblique loads are resisted mainly by the implant-abutment joint at the screw level and by the implant collar. This type of implant-abutment connection can also distribute forces deeper within the implant and shield the retention screw from excessive loading. Lateral forces are transmitted directly to the walls of the implant and the implant abutment mating bevels, providing greater resistance to interface opening.

A PHOTOELASTIC STRESS ANALYSIS IN MANDIBULAR DISTAL EXTENSION REMOVABLE PARTIAL DENTURE DESIGNED UNILATERALLY WITH DIFFERENT DIRECT RETAINERS (편측성으로 설계된 하악 유리단 국소의치에서 직접유지장치의 설계 변화에 따른 광탄성 응력 분석에 관한 연구)

  • Son Hong-Suk;Kay Kee-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.1
    • /
    • pp.25-42
    • /
    • 1992
  • The purpose of this study was to analyze the magnitude and distribution of stress using a photoelastic model from a unilateral distal extention removable partial dentures with five kinds of the direct retainers, that is, the bilaterally designed bar clasp of the cross-arch lingual bar and the unilaterally designed bar clasp, circumferential clasp, mini-Dalbo attachment, and telescope retainer. A photoelastic model for mandible was made of the epoxy resin(PL-1) and hardner (PLH-1) with the acrylic resin teeth used and was coated with plastic cement-1 at the lingual surface of the model, and then five kinds of removable partial dentures were set, A unilateral vertical load of about 16Kg was applied on the first molar and the stress pattern of the photoelastic model under each condition was analyzed by the reflective circular polariscope. The following results were obtained: 1. The conventional removable partial denture with the bilaterally cross arch lingual bar produced the most favorable stress distribution on the residual ridge and supporting structure of abutment teeth than the unilaterally designed removable partial dentures. 2. The unilaterally designed removable partial denture with the bar clasp produced the stress distribution on the residual ridge, except sligtly higher stress concentration on the supporting structure of the abutment teeth, similar to the conventional removable partial denture with the bilaterally designed cross arch lingual bar. 3. On the unilaterally designed removable partial dentures, the bar clasp produced greater stress distribution on the residual ridge and supporting structure of the abutment teeth than the circumferential clasp. 4. On the unilaterally designed removable partial dentures, the mimi-Dalbo attachment produced relatively higher stress concentration on the residual ridge, but produced lesser stress concentration on the supporting structure of the abutment teeth than the other direct retainers. 5. On the unilaterally designed removable partial dentures, the telescope retainer produced uniform stress distribution on the residual ridge, but produced higher stress concentration at the root apex of the terminal abutment tooth than the other direct retainers. 6. On the unilaterally designed removable partial dentures the circumferential clasp and telescope retainer produced slightly higher stress concentration on the residual ridge and supporting structure of the abutment teeth than the bar clasp and mini- Dalbo attachment.

  • PDF

FLEXURAL STRENGTH OF IMPLANT FIXED PROSTHESIS USING FIBER REINFORCED COMPOSITE (섬유성 강화 컴포지트를 사용한 임플랜트 고정성 보철물의 굴곡강도)

  • Kang, Kyung-Hee;Kwon, Kung-Rock;Lee, Sung-Bok;Choi, Dae-Gyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.5
    • /
    • pp.526-536
    • /
    • 2006
  • Statement of problem : Use of fiber composite technology as well as development of nonmetal implant prosthesis solved many problems due to metal alloy substructure such as corrosion. toxicity, difficult casting, expensiveness and esthetic limit. After clinical and laboratory test, we could find out that fiber-reinforced composite prostheses have good mechanical properties and FRC can make metal-free implant prostheses successful. Purpose : The purpose of this study is to evaluate the flexural strength of implant fixed prosthesis using fiber reinforced composite. Material and methods : 2-implant fixture were placed in second premolar and second molar area in edentulous mandibular model, and their abutments were placed, and bridge prostheses using gold, PFG, Tescera, and Targis Vectris were fabricated. Tescera was made in 5 different designs with different supplements. Group I was composed by 3 bars with diameter 1.0mm and 5 meshes, 2 bars and 5 meshes for Group II, 1 bar and 5 meshes for Group III, and only 5 meshes were used for Group IV. And Group V is composed by only 3 bars. Resin (Tescera) facing was made to buccal part of pontic of gold bridge. All of gold and PFG bridges were made on one model, 5 Targis Vectris bridges were also made on one model, and 25 Tescera bridges were. made on 3 models. Each bridge was attached to the test model by temporary cement and shallow depression was formed near central fossa of the bridge pontic to let 5 mm metal ball not move. Flexual strength was marked in graph by INSTRON. Results : The results of the study are as follows. The initial crack strength was the highest on PFG. and in order of gold bridge Tescera I, Tescera II, Targis vectris, Tescera IV, Tescera III, and Tescera V. The maximum strength was the highest on gold bridge, and in order of PFG, Tescera I, Tescera IV Tescera II, Targis vectris, Tescera III, and Tescera V. Conculsions : The following conclusions were drawn from the results of this study. 1. Flextural strength of implant prosthesis using fiber reinforced composite was higher than average posterior occlusal force. 2. In initial crack strength, Tescera I was stronger than Tescera V, and weaker than PFG. 3. Kinds and number of auxillary components had an effect on maximum strength, and maximum strength was increased as number of auxillary components increased. 4 Maximum strength of Tescera I was higher than Targis vectris, and lower than PFG.

A PHOTOELASTIC STRESS ANALYSIS IN MANDIBULAR DISTAL - EXTENSION REMOVABLE PARTIAL DENTURES WITH VARIOUSLY DESIGNEO INDIRECT RETAINERS (간접유치장치 설계변화에 따른 하악유리단 국소의치의 광탄성 응력분석)

  • Kang, Seung-Jong;Kay, Kee-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.28 no.2
    • /
    • pp.183-197
    • /
    • 1990
  • The purpose of this study was to analyse the magnitude and distribution of stresses using a Photoelastic model from and distal - extension removable partial dentures With four designed indirect retainers. The designs of the indirect retainers were as follows : Design No. 1 : Aker's clasp on 1st bicuspid with no indirect retainer. Design No. 2 : Aker's clasp on 1st bicuspid with indirect retainer on canine. Design No. 3 : Extension of the reciprocal arm of Aker's clasp toward incisal rest on canine. Design No. 4 : Connection with the indirect retainer as in No. 2 and extension of reciprocal arm of Aker' s clasp. A photoelastic model was made of the epoxy resin(PL - 1) and hardner(PLH - 1) and coated with plastic cement -1(PC -1) at the lingual surface of the epoxy model and set with chrome - cobalt partial dentures. A unilateral vertical load of 10kg to the right 1st molar and a vertical load of 10kg to the middle portion of the metal bar crossing both the 1st molars of the right and left, were applied. With the use of specially designed jig, fixture; loading device and the reflective circular polariscope, we obtained the following results : 1. When the unilateral vertical load and the vertical load of the middle portion of the metal bar were applied, design No. 2, 3 and 4 exhibited the higher stress concentration at the root apices and their surrounding tissues of the primary and secondary abutment teeth. 2. When the unilateral vertical load applied to design No. 2,3 and 4 the root apices of the primary and secondary abutment teeth and their surrounding tissues and the nonloaded side of edentulous area exhibited and even stress distribution. 3. When the vertical load was applied, the stress concentration fringe in the primary and secondary abutment teeth was in the order of No. 1,4,2 and 3. 4. No.1 and 4 exhibited the higher distrorted stress concentration at the primary teeth and the edentulous area in the nonloaded side. 5. No.2 design reduced the stresses at the apices of the alveoli of the primary abutment teeth bilaterally as well as on the crest of the residual ridge on the nonloaded side. 6. No. 2 design exhibited the most favorable stress distribution.

  • PDF

THE EFFECTS OF DECALCIFIED FREEZE-DRIED BONE AND SYNTHETIC BONE GRAFTS ON REGENERATION OF ALVEOLAR BONE DEFECTS IN DOGS (탈회동결건조골과 합성골이식재가 치조골 결손부 재생과정에 미치는 영향)

  • Choi, Seong-Je;Kwon, Young-Hyuk;Park, Joon-Bong
    • Journal of Periodontal and Implant Science
    • /
    • v.24 no.3
    • /
    • pp.671-689
    • /
    • 1994
  • The purpose of this study was to compare effects of various bone grafts on periodontal regeneration of alveolar bone defects in dogs. Seven adult dogs aged 12 to 18 months were used in this study. Experimental alveolar bone defects were created surgically with a #1/2 round bur at the furcation area of the buccal surface of the mandibular 3rd, 4th premolars and 1st molar. Each experimental alveolar bone defects were grafted with dense hydroxyapatite, natural coral, and decalcified freeze-dried bone, and respectively divided into DHA, NC, DFDB group. An area without bone graft was divided into control group. At 1,2,4,6, and 12 weeks, dogs were serially sacrificed and specimens were prepared with Hematoxylin-Eosin stain and Mallory stain for light microscopic evaluation. The results of this study were as follows : 1. In control group, the matrix change of granulation tissue was observed at 1 week. And in experimental groups, the appearance of connective tissue around graft materials was loosely formed at 1 week, but densely formed at 2 weeks. 2. In every group, the slight formation of new trabecular bone was seen from remaining bone at 1 week. 3. The DHA and NC particles were gradually encapsulated by new trabecular bone from remaining bone, and the osteoid tissue was directly induced from DFDB particles. 4. The presence of osteoblasts was first observed at 1 week in control group and at 2 weeks in NC group, but at 6 weeks in DHA group. 5. In DHA group, the resorption of particles was not observed until 12 weeks. But in NC and DFDB group, the particles were resorbed at 6 weeks and replaced by new bone. And the amount and size of particles were reduced, and their border represented irregular form. In summary, in three experimental groups the inflammatory or foreign body reaction were slight, but the regeneration of new osteoid tissue and the matrix change of dense connective tissue fiber were observed. Especially, NC and DFDB materials were considered as the biocompatible graft materials which were effective in the regenertion of new bone.

  • PDF

Three-dimensional finite element analysis on stress distribution of the mandibular implant-supported cantilever prostheses depending on the designs (임플란트 지지 하악 캔틸레버 보철물의 디자인에 따른 저작압 분산에 관한 삼차원 유한요소 분석)

  • Ban, Jae-Hyurk;Shin, Sang-Wan;Kim, Sun-Jong;Lee, Jeong-Yeol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.1
    • /
    • pp.70-81
    • /
    • 2009
  • Statement of problem: The position and length of cantilever influence on the stress distribution of implants, superstructure and bone. In edentulous mandible, implant-supported cantilever prostheses that based 4 or 6 implants between mental foramens has been attempted. Excessive bite force loaded at cantilever prosthesis causes bone resorption and breakage of superstructure prosthesis around posterior implants. To complement the cantilever length of conventional prosthesis, In 1992, (McCartney) introduced "cantilever-rest-implant" and Malo reported "All-on-Four" in 2003. Purpose: Analyze and compare the stress distribution of conventional cantilever prostheses with rest implant and All-on-$Four^{TM}$ implant prostheses. Material and method: The external loads(300 N vertically, 75 N horizontally) are applied to first molar area. The stress value, stress distribution and aspect of stress dispersion are analyzed by three-dimensional finite element analysis program, ANSYS ver. 10.0. Results: 1. The rest implant and "All-on-Four" implant system are superior to conventional cantilever prostheses to reduce stress on the bone and the superstructure around implants. 2. The rest implant was of the greatest advantage to stress distribution on bone, implant and superstructure. 3. With same number of implants, distally tilted implants are preferred to conventional cantilever prostheses for reducing the length of cantilever.

REGIONAL ODONTODYSPLASIA : CASE REPORT (국소적 치아 이형성증(Regional odontodysplasia)에 대한 증례)

  • Lee, Jae-Ho;Cho, Jae-Hyun;Kim, Ki-Dug;Choi, Byung-Jai
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.1
    • /
    • pp.175-179
    • /
    • 2001
  • Regional odontodysplasia is a relatively rare condition in which both enamel and dentin are hypoplastic and hypocalcified. The result is localized arrest in tooth development. The etiology of regional odontodysplasia is uncertain, but, disturbance in vascular supply, somatic mutation, latent virus infection, trauma, hyperpyrexia, irradiation, nutrition, metabolic disorders and hereditary transmission are supported to be etiologic factors. Females are more often affected than males. (1.4 : 1). The maxillary arch is more often affected than the mandibular arch with the maxillary left quadrant being the most commonly involved. Affected teeth are hypoplastic, typically discolored yellow or yellowish brown, smaller in size and display a variety of surface marking including pitting and grooving. Radiographically, the teeth affected have been described to have a "ghost like" appearance or "fuzzy" appearance. Pulp calcification and denticles may be present within the pulp chambers of the affected teeth. In it's case, a 2 years old male visited for a treatment of uneruption of lower right teeth. Partial eruption of lower right deciduous central incisor and unerupted deciduous lateral incisor, deciduous canine and deciduous first molar showed severly delayed eruption state. On radiographic appearance, "Ghost like appearance", shortened root and opened apexes on lower right region were observed. It was suspected regional odontodysplasia with clinical and radiographic condition.

  • PDF

AN EXPERIMENTAL STUDY ON THE TISSUE RESPONSE OF THE TEMPOROMANDIBULAR JOINT IN UNILATERAL MANDIBULAR EDENTULISM (하악편측치아의 결손에 따른 악관절의 조직반응에 대한 연구)

  • Paik, Hyee-Seon;Kim, Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.2
    • /
    • pp.285-294
    • /
    • 1991
  • The human temporomandibular joint as a ginglymoarthrodial one has much in common with the other synovial joints of the body, but it does possess an unique charachteristic in that it must accomodate the various occlusal relations of dentition during an end point of closure. For that reason, the movement of the condyle in the temporomandibular joint is susceptible to influences from the nature of occlusion. Undue loading to the temporomandibular joint can be applied on the occasion of premature contacts in centric relation, balancing side interferences, change of occlusal surfaces due to excessive attrition, loss of tooth. Such occlusal disharmonies in association with the systemic and emotional factors may give rise to the temporomandibular disorder. On the other hand, the changes of occlusal patterns in the growing body can also have an effect on the growth of the temporomandibular joint through the alterations of functional stresses. The purpose of this study was to observe histopathologic response of the temporomandibular joint in unilateral chewing on one side exclusively for 10 months. Three dogs showing normal masticatory function were chosen. One dog aged about 12 months was for control, two dogs for experimental specimens were about 12 and 18 months old respectively. For chewing on the left side only, unilateral lower right premolar and molar were extracted in two experimental specimens. And then three dogs were sacrificed 10 months later. Frontal histologic sectioning of joints were done for the observation of the effects of one-side chewing. 24 specimens from three dogs were obtained and fixed in 10% formalin and routinly processed with H-E staining for histologic examination. The light microscopic findings were interpretated as follows: 1. Experimental specimen 1 aged about 22 months: In comparison with control and right non-chewing side, the proliferative and hypertrophic zone were increased at the mesial and lateral part of left chewing side condyle. There was no change of the articular tissue of temporal bone. 2. Experimental specimen 2 aged about 28 months: The articular tissues of adult joint were observed. The differences between the chewing and non-chewing side were not seen in the articular tissues of condyle and temporal bone.

  • PDF

A MORPHOMETRIC STUDY ON THE PRIMARY MOLARS AND PREFORMED STAINLESS STEEL CROWN (유구치 치관 및 기성금속관의 크기에 관한 계측학적 연구)

  • Choi, Ji-Eun;Cheong, Tae-Sung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.3
    • /
    • pp.355-362
    • /
    • 2001
  • Data derived from odontometric studies are useful in many areas. Especially crown diameter of primary teeth is important in not only anthropology but also clinical dentistry. The purposes of this study were to compare diameters of primary molars of Korean children with those of preformed stainless steel crown, and examine racial characteristics of primary molars of Korean children. The mesiodistal and buccolingual diameters of primary molars were measured on dental casts taken from 235 children(male 105, female 131), with digital calipers. And the data were compared with those of preformed stainless steel crowns. The results were as follows; 1. No significant difference was observed between the right and left members of antimeric teeth and all primary molars of male were larger than those of female. 2. The diameters of primary molars of Korean are smaller than those of Austrailian aborigines and there was significant difference between diameters of primary molars of Korean and those of other populations. 3. There were size differences between diameters of maxillary, mandibular first molar and preformed stainless steel crown than other primary molars, relatively.

  • PDF