• Title/Summary/Keyword: Mandibular Molar

Search Result 880, Processing Time 0.052 seconds

A cephalometric investigation on the craniofacial configurations of Class ll division 1 and 2 in Korean (한국인 II급 1류 및 2류 부정교합자 두개안면형태의 차에 대한 측모두부방사선계측학적 연구)

  • Kang, Jong-Won;Lee, Young-Jun;Park, Young-Guk
    • The korean journal of orthodontics
    • /
    • v.32 no.3 s.92
    • /
    • pp.195-207
    • /
    • 2002
  • Numerous studies have revealed the similarities and discrepancies in two divisions of class II malocclusion, since these malocclusion groups have been postulated to be disparate criterion, much as classified under one diagnostic umbrella. This study was undertaken to describe the craniofacial configurations of class II division 1 and 2, and consequently to discriminate the morphologic differences between the two malocclusion groups in Korean sample. Lateral headfilms of 34 class H division 1 and 29 division 2 were employed, while those of 142 adults of normal occlusion served as a control. The landmarks were digitized and 26 variables were statistically analyzed for one way ANOVA. 1. There manifested no statistically significant difference in maxillary position anteroposteriorly. Normal occlusion group exhibited most anteriorly positioned mandible, whereas class II division 1 showed the most retroposition. Class II division 1 disclosed clockwise rotation tendency of mandible, which resulted in position of the chin Posteriorly. 2. Class II division 1 showed greater in SN to MP, SN to PP significantly than other groups. 3. Class II division 2 showed smaller genial angle and larger mandibular body length than other groups. 4. Class II division 1 revealed greater anterior lower face height than other groups, whereas division 2 dictated significantly greater posterior face height. 5. Class II division 2 expressed the most retroclined lower incisor, while division 1 manifested the most proclination. The largest interincisal angle resided in Class II division 2 group. There were no significant differences in upper molar position anteroposteriorly.

A STUDY OF THE STRESS DISTRIBUTION OF THE ABUTMENT AND SUPPORTING TISSUES ACCORDING TO THE SLOPES AND TYPES OF CHIDING FLAMES OF THE LAST ABUTMENT IN DISTAL EXTENSION REMOVABLE PARTIAL DENTURE USING THREE DIMENSIONAL FINITE ELEMENT ANALYSIS METHOD (국소의치 최후방 지대치 유도면의 기울기와 형태가 지대치 및 지지조직의 응력분산에 미치는 영향)

  • Kim, Yang-Kyo;Lee, Cheong-Hee;Jo, Kwang-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.5
    • /
    • pp.581-596
    • /
    • 1999
  • The purpose of this study was to investigate the stress distribution of the abutment and sup-porting tissues according to the slopes and types of the guiding plane of distal extension removable partial dentures. The 3-dimensional finite element method was used and the finite element models were prepared as follows. Model I : Kratochvil type guiding plane with $90^{\circ}$ to residual ridge Model II : Kratochvil type guiding plane with $95^{\circ}$ to residual ridge Model III : Kratochvil type guiding plane with $100^{\circ}$ to residual ridge Model IV : Krol type guiding plane with $90^{\circ}$ to residual ridge Distal extension partial denture which right mandibular first and second molar were lost was used and the second premolar was prepared as primary abutment with RPI type retainer. Then 150N of compressive force was applied to central fossae of the first and second molars and von Mises stress and displacement were measured. The results were as follows 1. Model I and Model IV showed a similar stress distribution pattern and the stress was concentrated on the apex of the root of the abutment. 2. The stress was increased and concentrated on mesial side of the root of the abutment in Model II. The stress was concentrated on buccal and mesiobuccal side of the root of the abutment in Model IV. 3. In Model I, the root of the abutment displaced and twisted a little in clockwise. In Model IV, the root of the abutment displaced to distolingually at apical region of the root and mesiobuccally at cervical region of the root. 4. In Model II, the root of the abutment displaced to mesiolingually at apical region of the root and more displaced and twisted in counterclockwise at cervical region of the root. In Model III, the root of the abutment displaced to mesiobucally at apical region of the root and more displaced and twisted in clockwise at cervical region of the root.

  • PDF

Three-dimensional finite element analysis for the effect of retentive groove design on joint strength of casting connection (유지구 설계가 주조연결강도에 미치는 영향에 관한 삼차원 유한요소법적 연구)

  • Kim, Jung-Woo;Jeong, Chang-Mo;Jeon, Young-Chan;Yun, Mi-Jung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.1
    • /
    • pp.29-38
    • /
    • 2009
  • Statement of problem: A casting connection technique is widely used for repair, correction and addition to base metal framework. However, a casting connection technique may increase the risk of failure in clinical situations when high stresses exist. Purpose: The purpose of this study was to investigate the mechanical retentive groove design comparatively to increase the joint strength by using the three-dimensional finite element analysis model of a 3-unit fixed partial denture. Material and methods: Ten finite element models were constructed. (Model A: One retentive groove, Model B: Two retentive grooves, Model C: Three retentive grooves, Model D: Four retentive grooves, Model E: One horizontal groove and two vertical grooves, Model F: Two horizontal grooves and one vertical groove, Model G: One groove with the enlarged dimension, Model H: Two grooves with the enlarged dimension, Model I: One groove with the increased height, Model J: One groove with the increased width of base). The vertical force was applied to the mesial and the distal fossa to the casting connection of mandibular first molar. Results: The main factors, affecting joint strength of casting connection were both the retention between the primary cast and the secondary cast and the thickness of the primary cast remaining after preparing retentive groove. The increase of retentive force, according to the numbers and the dimension of retentive groove had an effect on distributing stress. However, in some cases, the increase of retentive force resulted in the increase of stress by reducing thickness of the primary cast in the connection area. Conclusion: The design of retentive groove that limits number of retentive groove for metal thickness and increases the depth of retentive groove for retention is highly recommended.

Comparative study of fracture strength depending on the occlusal thickness of full zirconia crown (완전 지르코니아 크라운의 교합면 두께에 따른 파절강도의 비교 연구)

  • Jang, Soo-Ah;Kim, Yoon-Young;Park, Won-Hee;Lee, Young-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.3
    • /
    • pp.160-166
    • /
    • 2013
  • Purpose: The purpose of this study was to compare the fracture strength of traditional metal-ceramic crowns and full zirconia crowns according to the occlusal thickness. Materials and methods: A mandibular first molar resin tooth was prepared with 1.5 mm occlusal reduction, 1.0 mm rounded shoulder margin and $6^{\circ}$ taperness in the axial wall. Duplicating the resin tooth, 64 metal dies were fabricated. 48 full zirconia crowns were fabricated using Prettau zirconia blanks by ZIRKONZAHN CAD/CAM and classified into six groups according to the occlusal thickness (0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, 1.0 mm). 16 metal-ceramic crowns were fabricated and classified into two groups according to the occlusal porcelain thickness (1.0 mm, 1.5 mm). All crowns were cemented on each metal die and mounted in a universal testing machine. The load was directed at the functional cusp of each specimen until catastrophic failure occurred. One-way ANOVA, Tukey multiple comparison test (${\alpha}=.05$) and t-test (${\alpha}=.05$) were used. Results: The results were as follows. 1. The test 1 group (646.48 N) showed the lowest fracture strength (P<.05), and the value of the test 2.3.4.5 groups (866.40 N, 978.82 N, 1196.82 N, 1222.41 N) increased as thickness increased, but no significant difference were found with the groups (P>.05). The value of test 6 group (1781.24 N) was significantly higher than those of the other groups (P<.05). 2. There were no significant differences of the fracture strength of metal ceramic crowns according to occlusal porcelain thickness 1.0 mm (2515.71 N) and 1.5 mm (3473.31 N) (P<.05). Conclusion: Full zirconia crown needs to be 1.0 mm or over in occlusal thickness for the posterior area to have higher fracture strength than maximum bite force.

THE REACTION OF BONE REGENERATE TO THE VARIOUS FORCE RATIO AND PERIODS ON DISTRACTION OSTEOGENESIS WITH COMBINED DISTRACTION FORCE AND COMPRESSION FORCE (수축력과 신장력을 병용한 골신장술에서의 다양한 힘의 비와 부여시기에 따른 신연골 반응)

  • Kim, Uk-Kyu;Shin, Sang-Hun;Chung, In-Kyo;Kim, Cheol-Hun;Huo, Jun;Yun, Il
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.27 no.5
    • /
    • pp.403-414
    • /
    • 2005
  • The purpose of this study was to identify the effectiveness of the modified distraction osteogenesis (DO) method with the concept of overdistraction and compression stimulation which have been previously suggested by the authors in 2002 and to explore the optimal distraction-compression ratio and appropriate latency period for the compression force application during consolidation. The experimental specimens were assessed with radiography, histologic findings, and dual energy x-ray absorptiometry (DEXA) after the conventional DO method and the modified DO technique had been applied on rat mandibles. Total 60 rats were used for the study. In experimental group of 54 adult rats, mandibular osteotomies between the first and second molar areas were performed and customized external distractors were applied. The surgeries on 6 rats of control group also were done with same osteotomy technique and DO device application. Final amount of distraction was set-up as 2 mm on both groups. But, in a experimental group of 54 rats, distraction osteogenesis with a compression force were performed with the different distraction-compression ratio and variant latency periods for compression. The three ratio-subgroups were made as distraction 4 mm group with compression 2 mm, distraction 3 mm group with compression 1 mm, and distraction 2.5 mm group with compression 0.5 mm. In addition, The three subgroups with 3, 7, 11 days latency period prior compression were allocated on each ratio-subgroups. Total 9 subgroups consisted of 6 rats on each subgroup. In control group of 6 rats, conventional distraction technique were routinely performed. The rats of control groups were sacrificed on postoperative 3, 6 weeks after 2 mm distraction. The rats in the experimental groups also were sacrificed on the same euthanasia days of control groups to compare the wound healing. Final available specimens were 55 rats except 5 due to osteomyelitis, device dislodgement. Distraction-compression combined group on 6 weeks generally had showed increased bone mineral density than the same period group of conventional distraction technique on the DEXA study. More matured lamellar bone state and extended trabecular pattern in the combined group than those of control group were also observed in the histologic findings on 6 weeks. In the distraction-compression combined groups, the bone density of 2.5 mm distraction subgroups with 0.5 mm compression showed the highest value on the DEXA study among various force ratio groups. In the distraction-compression combined groups, the bone density of 3 day latency period subgroups showed the highest value on the DEXA study among various latency period groups for the compression application. From this study, we could deduce that 1/5 force ratio for the compression versus distraction, 3 day latency period prior compression application would be the most effective condition if modified distraction osteogenesis technique might be applicable. The modified DO method with a compression force may improve the quality of bone regenerate and shorten total treatment period in comparison with conventional DO technique clinically.

THE EFFECTS OF SURFACE CONTAMINATION BY HEMOSTATIC AGENTS ON THE SHEAR BOND STRENGTH OF COMPOMER (지혈제 오염이 콤포머의 전단결합강도에 미치는 영향)

  • Heo, Jeong-Moo;Kwak, Ju-Seog;Lee, Hwang;Lee, Su-Jong;Im, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.2
    • /
    • pp.150-157
    • /
    • 2002
  • One of the latest concepts in bonding are "total etch", in which both enamel and dentin are etched with an acid to remove the smear layers, and "wet dentin" in which the dentin is not dry but left moist before application of the bonding primer Ideally the application of a bonding agent to tooth structure should be insensitive to minor contamination from oral fluids. Clinically, contaminations such as saliva, gingival fluid, blood and handpiece lubricant are often encountered by dentists during cavity preparation. The aim of this study was to evaluate the effect of contamination by hemostatic agents on shear bond strength of compomer restorations. One hundred and ten extracted human maxillary and mandibular molar teeth were collected. The teeth were removed soft tissue remnant and debris and stored in physiologic solution until they were used. Small flat area on dentin of the buccal surface were wet ground serially with 400, 800 and 1200 abrasive papers on automatic polishing machine. The teeth were randomly divided into 11 groups. Each group was conditioned as follows : Group 1: Dentin surface was not etched and not contaminated by hemostatic agents. Group 2: Dentin surface was not etched but was contaminated by Astringedent$^{\circledR}$(Ultradent product Inc., Utah, U.S.A.) Group 3: Dentin surface was not etched but was contaminated by Bosmin$^{\circledR}$(Jeil Pharm, Korea.). Group 4: Dentin surface was not etched but was contaminated by Epri-dent$^{\circledR}$(Epr Industries, NJ, U.S.A.). Group 5: Dentin surface was etched and not contaminated by hemostatic agents. Group 6: Dentin sorface was etched and contaminated by Astringedent$^{\circledR}$. Group 7 : Dentin surface was etched and contaminated by Bosmin$^{\circledR}$. Group 8: Dentin surface was etched and contaminated by Epri-dent$^{\circledR}$. Group 9: Dentin surface was contaminated by Astringedent$^{\circledR}$. The contaminated surface was rinsed by water and dried by compressed air. Group 10: Dentin surface was contaminated by Bosmin$^{\circledR}$. The contaminated surface was rinsed by water and dried by compressed air. Group 11 : Dentin surface was contaminated by Epri-dent$^{\circledR}$. The contaminated surface was rinsed by water and dried by compressed air. After surface conditioning, F2000$^{\circledR}$ was applicated on the conditoned dentin surface The teeth were thermocycled in distilled water at 5$^{\circ}C$ and 55$^{\circ}C$ for 1,000 cycles. The samples were placed on the binder with the bonded compomer-dentin interface parallel to the knife-edge shearing rod of the Universal Testing Machine(Zwick Z020, Zwick Co., Germany) running at a cross head speed or 1.0 mm/min. Group 2 showed significant decrease in shear bond strength compared with group 1 and group 6 showed significant decrease in shear bond strength compared with group 5. There were no significant differences in shear bond strength between group 5 and group 9, 10 and 11.

Finite Element Analysis of Bone Stress Caused by Horizontal Misfit of Implant Supported Three-Unit Fixed Prosthodontics (3차원 유한요소법에 의한 임플란트 지지 3본 고정성 가공 의치의 부적합도가 인접골 응력에 미치는 영향 분석)

  • Lee, Seung-Hwan;Jo, Kwang-Hun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.28 no.2
    • /
    • pp.147-161
    • /
    • 2012
  • This study is to assess the effect of horizontal misfit of an implant supported 3-unit fixed prosthodontics on the stress development at the marginal cortical bone surrounding implant neck. Two finite element models consisting of a three unit fixed prosthodontics and an implant/bone complex were constructed on a three dimensional basis. The three unit fixed prosthodontics were designed either shorter (d=17.8mm model) or longer (d=18.0mm model) by 0.1mm than the span of two implants placed at the mandibular second premolar and second molar areas 17.9mm apart. Fitting of the fixed prosthodontics onto the implant abutments was simulated by a total of 6 steps, that is to say, 0.1mm displacement per each step, using DEFORM 3D (ver 6.1, SFTC, Columbus, OH, USA) program. Stresses in the fixed prosthodontics and implants were evaluated using von-Mises stress, maximum compressive stress, and radial stress as necessary. The d=17.8mm model assembled successfully on to the implant abutments while d=18.0mm model did not. Regardless if the fixed prosthodontics fitted onto the abutments or not, excessively higher stresses developed during the course of assembly trial and thereafter. On the marginal cortical bone around implants during the assembly, the peak tensile and compressive stresses were as high as 186.9MPa and 114.1MPa, respectively, even after the final sitting of the fixed prosthodontics (for d=17.8mm model). For this case, the area of marginal bone subject to compressive stresses above 55MPa, equivalent of the $4,000{\mu}{\varepsilon}$, i.e. the reported threshold strain to inhibit physiological remodeling of human cortical bone, extended up to 2mm away from implant during the assembly. Horizontal misfit of 0.1mm can produce excessively high stresses on the marginal cortical bone not only during the fixed prosthodontics assembly but also thereafter.

EXPRESSION PATTERN OF RUNX2 IN MURINE TOOTH DEVELOPMENT (Mouse의 치아 발육시 Runx2의 발현 양상)

  • Kim, Tae-Wan;Ryoo, Hyun-Mo;Nam, Soon-Hyeun;Kim, Young-Jin;Kim, Hyun-Jung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.4
    • /
    • pp.651-658
    • /
    • 2004
  • Runx2 is a transcription factor in homologous with Drosophila runt gene and it is essential for bone formation during embryogenesis and a critical gene for osteoblast differentiation and osteoblast function. Runx2-haploinsufficency causes cleidocranial dysplasia (CCD). CCD is an autosomal-dominant inherited disorder characterized by hypoplastic clevicle and delayed ossification in fontanelles and wormian bones. Dental defects are possibly shown to CCD patients : multiple supernumerary teeth, irregular and compressed permanent tooth crowns, hypoplastic and hypomineralized defects in enamel and dentin, an excess of epithelial root remnants, the absence of cellular cementum, and abnormally shaped roots. In addition, delayed eruption of the secondary dentition is a constant finding. The aim of this study is to evaluate the role of Runx2 in the tooth development and eruption through analyzing the expression pattern of Runx2 by in situ hybridization during crown (late bell stage) and root formation of tooth, using postnatal day 1, 4, 7, 14 and 21 mice mandibular molar teeth. mRNA of Runx2-full length is expressed in dental follicle and surrounding tissue at postnatal day1 and 4. At postnatal day 7, it is expressed in ameloblasts of occlusal surface of enamel and bone area surrounding the tooth. In comparison with previous stage, at postnatal day 14, it is expressed in ameloblasts of proximal surface of enamel. At postnatal day 21 it's expression is observed only in bone area. mRNA of Runx2-typeII is not expressed. At postnatal day 1 and 7. At postnatal day 14 and 21, it's expression is observed in the bone area. In this study, we suggest that Runx2 have a relation of ameloblasts differentiation and an important role to tooth eruption made by dental follicle during intraosseous eruption stage. Also we can confirm that Runx2 has a role to bone formation.

  • PDF

Comparison of the effect of removing artificial dental plaque depending on various interdental cleaning products on the interdental surface of zirconia crowns (치간 세정 용품에 따른 지르코니아 크라운 인접면의 인공 치면 세균막 제거 효과)

  • Kim, Hyun-Wook;Song, Ha-Kyung;Park, Eun-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.3
    • /
    • pp.291-298
    • /
    • 2021
  • Purpose. The purpose of this study is to compare five interdental cleansing products' effectiveness on removing artificial dental plaque on the interdental space of zirconia crowns. Materials and methods. A model with abutments on the right mandibular second premolar and first molar were prepared. 10 zirconia crowns for each abutment were fabricated. After applying artificial dental plaque between the zirconia crowns, a single clinician attempted to remove the plaque with five products: interdental toothbrush, end-tuft toothbrush, dental floss, Easypick, Water pik. They were conducted 10 times per group. The aspect and area of removed surfaces were analyzed using images taken with a digital camera. One factor analysis of variance was performed as a statistical analysis, and a post-hoc test was performed using the Scheffé method (P < .05). Results. There were differences in the area and the pattern according to the characteristics of the products. The largest area, including the marginal portion, was removed in the dental floss group. Interdental toothbrush group was the most effective in removing the dental plaque at the marginal portion. Easypick was less effective than the interdental toothbrush. The end-tuft toothbrush showed better results than other products in cleansing mesiobuccal and distobuccal area, but could not cleanse the area directly below the contact point. In Water pik group, artificial dental plaque was scarcely removed. The removal rate of artificial dental plaque was in the order of floss (69.47%), end-tuft toothbrush (49.36%), interdental toothbrush (44.20%), Easy pick (13.04%), and Water pik (0.59%). Conclusion. Dental floss showed the highest removal rate in the interdental space restored with zirconia crowns, while interdental toothbrush was the most effective in removing the dental plaque at the marginal portion.

Stress distribution of molars restored with minimal invasive and conventional technique: a 3-D finite element analysis (최소 침습적 충진 및 통상적 인레이 법으로 수복한 대구치의 응력 분포: 3-D 유한 요소 해석)

  • Yang, Sunmi;Kim, Seon-mi;Choi, Namki;Kim, Jae-hwan;Yang, Sung-Pyo;Yang, Hongso
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.4
    • /
    • pp.297-305
    • /
    • 2018
  • Purpose: This study aimed to analyze stress distribution and maximum von Mises stress generated in intracoronal restorations and in tooth structures of mandibular molars with various types of cavity designs and materials. Materials and Methods: Three-dimensional solid models of mandible molar such as O inlay cavity with composite and gold (OR-C, OG-C), MO inlay cavity with composite and gold (MR-C, MG-C), and minimal invasive cavity on occlusal and proximal surfaces (OR-M, MR-M) were designed. To simulate masticatory force, static axial load with total force of 200 N was applied on the tooth at 10 occlusal contact points. A finite element analysis was performed to predict stress distribution generated by occlusal loading. Results: Restorations with minimal cavity design generated significantly lower values of von Mises stress (OR-M model: 26.8 MPa; MR-M model: 72.7 MPa) compared to those with conventional cavity design (341.9 MPa to 397.2 MPa). In tooth structure, magnitudes of maximum von Mises stresses were similar among models with conventional design (372.8 - 412.9 MPa) and models with minimal cavity design (361.1 - 384.4 MPa). Conclusion: Minimal invasive models generated smaller maximum von Mises stresses within restorations. Within the enamel, similar maximum von Mises stresses were observed for models with minimal cavity design and those with conventional design.