• Title/Summary/Keyword: Mancozeb

Search Result 77, Processing Time 0.027 seconds

Risk Assessment of Pesticide for Earthworms (농약의 지렁이에 대한 위해성 평가)

  • Park, Kyung-Hun;Park, Yeon-Ki;Joo, Jin-Bok;Kyung, Kee-Sung;Shin, Jin-Sup;Kim, Chan-Sub;Park, Byung-Jun;Uhm, Jae-Youl
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.4
    • /
    • pp.280-287
    • /
    • 2003
  • To assess the risk of pesticides on earthworm, the acute toxicities of 10 pesticides were investigated and their toxicity exposure ratios(TERs) were calculated. As the TERs of paraquat dichloride and pendimethalin were more than 100, their risks were rated negligible. Risk of benfuracarb, cadusafos, chlorpyrifos-methyl, endosulfan, isazofos and parathion which have TERs of $10\sim100$ were rated low. However, risk of imidacloprid and phorate which have TER of less than 10 were estimated highly to need a reproduction study. Earthworms were exposed to twenty two pesticides including dazomet 98% GR having PECs of more than $5mg{\cdot}kg^{-1}$ in artificial soil at standard and double dose for 14 days. All the earthworms exposed to dazomet 98% GR and metam-sodium 25% SL were died to show their high risk, while no serious adverse effects were observed in the soil treated with 15 pesticides, calcite 95% WP, calcium polysulfide 36% CF, chlorothalonil 75% WP, daminozide 85% WP, dichlonil 6.7% GR, etridiazole 25% EC, fosetyl-Al 80% WP, glyphosate 41 % SL, hymexazol 30% SL, iprodione 50% WP, machine oil 95% EC, mancozeb 75% WP, propineb 70% WP, terbuthylazine 80% WP and triazophos 40% EC. In case of thiophanate-methyl 70% WP, copper hydroxide 77% WP, dimethoate 46% EC, tolclofos-methyl 50% WP and propamocarb hydrochloride 67% SL, any effect did not show clearly, suggesting an additional subchronic toxicity study. The risk of thiophanate-methyl 70% WP to earthworm was estimated high, considering its subchronic effect, while effects of copper hydroxide 77% WP, dimethoate 46% EC, tolclofos-methyl 50% WP and propamocarb hydrochloride 67% SL to earthworms were negligible, considering no adverse effects in subchronic tests.

Development of assay method for the activities of new compounds, and the effect of several fungicides against spore germination, adhesion, and myceial growth of Colletotrichum sp. causing red pepper anthracnose (고추 탄저병균의 포자 발아와 부착, 균사 생장에 미치는 화합물의 활성 검정법 확립 및 살균제의 효과)

  • Kim, Jae-Jeung;Kim, Joon-Tae;Park, Sung-Woo;Park, Eun-Suk;Kim, Heung-Tae
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.3
    • /
    • pp.159-168
    • /
    • 2003
  • With microtiter plate, the assay method was developed for detecting the fungicidal activity of new compounds against spore germination, spore adhesion and mycelial growth of Colletotrichum sp. JC24 cal1Sing red pepper anthracnose. Also, the effects of some commercialized fungicides on fungal development like above mentioned were investigated by measuring the optical density of mycelia grown into wells of microtiter plate. For the standardization of assay method, some factors, such as the treatment of MTT and/or propanol, inodulum density and incubation period, affecting on mycelial optical density were investigated. For obtaining precise and consistent mycelial optical density, it was necessary the treatment of MTT for 12 hrs and propanol for 1 hr. inoculum density adjusted to $1\times10^5$ spores/mL and incubation period for 36 hrs at $25^{\circ}C$. For fungicidal activities, 6 protective fungicides, 6 ones inhibiting sterol biosynthesis, and one inhibiting respiration were used in this study. While mancozeb, chlorothalonil and dithianon among 6 protective fungicides inhibited strongly spore germination, adhesion, and mycelial growth at $6.25{\mu}g/mL$, propineb, iminoctadine and fluazinam inhibited intermediately spore germination and mycelial growth at $100{\mu}g/mL$. Washing above 3 fungicides with new PD broth, their activity against spore adhesion decreased. With hexaconazole, tebuconazole and myclobutanil, the tendency of the activity against fungal differentiation of the early infection stage was similar to the latter group of protective fungicides, showing the decrease of the inhibitory activity against spore adhesion by washing 2 hrs after incubation. However, kresoxim-methyl inhibited spore adhesion distinctly, depending on the applied concentrations. Based on these results, it might be able to assess the fungicidal activity of many compounds against spore germination, adhesion and mycelial growth by the use of microtiter plate in vitro. Using the assay developed in this report, it was possible to investigate the inhibitory activity of some commercialized fungicides, too.

Risk assessment for estrogenic effect of the suspected endocrine disrupting pesticides (내분비계 장애추정농약에 대한 에스트로겐성 영향검색 및 위해성 평가)

  • Lee, Je-Bong;Shin, Jin-Sup;Lee, Hee-Dong;Jeong, Mi-Hye;You, Are-Sun;Kang, Kyu-Young
    • The Korean Journal of Pesticide Science
    • /
    • v.8 no.2
    • /
    • pp.95-102
    • /
    • 2004
  • The present study was conducted to test and evaluate estrogenic effect of 17 pesticides including benomy1 and carbaryl, being suspected as endocrine disrupting chemicals. For estrogenic effect examination, luciferase assay were achieved with human ovarian cancer cell, BG1Luc4E2. Estrogenic effects of cypermethrin, dicofol, endosulfan, esfenvalerate, and fenvalerate were observed at the concentration of $10^{-5}$ M by estrogen receptor binding assay. Relative luciferase potency and relative luciferase effects compared with $10^{-10}$ M 17 $\beta$-estradiol were $10^{-5}$, 56% for dicofol, and $10^{-5}$, 72% for endosulfan, respectively. Estimated maximum daily intake for pesticides was calculated from maximum residue limit of agricultural commodity and food consumption was 1.2298 mg/person. Theoretically calculated blood estrogen level from dietary intake for pesticides based on MRL in Korea, 3.075 ng/L was equivalent to 15% of estrogen concentration in normal blood, but practical monitoring data, 0.01938 ng/L was equal to 0.09693% of estrogen concentration in normal blood.

Analysis of Control Efficacy of Bacterial Fruit Blotch Caused by Acidovorax avenae subsp. citrulli in Recent Issues (최근 문제시 되는 수박 과일썩음병에 대한 방제효과 분석)

  • Back, Chang-Gi;Lee, Sung-Chan;Park, Mi-Jeoung;Han, Kyung-Sook;Kim, Hong-Ki;Lee, Yoon-Su;Park, Jong-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.1
    • /
    • pp.41-46
    • /
    • 2016
  • Bacterial fruit blotch (BFB) caused by Acidovorax avenae subsp. citrulli is defective disease to watermelon cultivated areas. To control of BFB, we investigated control efficiency to use commercial antibacterial pesticides. Growth inhibition zone on medium were formed as oxolinic acid WP and oxytetracycline WP. Control efficacy of four anti-bacterial pesticides on seed and seedling stage were performed. As a results, oxytetracyclin WP is shown over 90% control efficiency on seed and acibenzolar-S-methyl + mancozeb WP shown over 90% control efficiency on seedling stage Hot-water treatment method could be possible to reduced infection rate on seed. The conditions of hot-water treatments are $50{\sim}55^{\circ}C$ on 20~30 minutes. These results suggested that the methods were helpful watermelon seedling nursery to control of the bacterial fruit blotch by A. avenae subsp. citrulli.

Monitoring of Endocrine Disruptor-suspected Pesticide Residues in Greenhouse Soils and Evaluation of Their Leachability to Groundwater (시설재배 토양 중 내분비계장애 추정농약의 잔류 모니터링 및 지하수 용탈 가능성)

  • Noh, Hyun-Ho;Lee, Kwang-Hun;Lee, Jae-Yun;Park, Hyo-Kyung;Lee, Eun-Young;Hong, Su-Myung;Park, Young-Soon;Kyung, Kee-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.4
    • /
    • pp.441-452
    • /
    • 2011
  • This study was carried out to survey the residual characteristics of endocrine disruptor (ED)-suspected pesticides in greenhouse soils and assess their leachabilites to groundwater. Greenhouse soils were collected from 40 sites of greenhouse in 2008 in Korea. Sixteen ED-suspected pesticides which had been using in Korea, such as alachlor, benomyl, carbaryl, cypermethrin, 2,4-D, dicofol, endosulfan, fenvalerate, malathion, mancozeb, metribuzin, metiram, methomyl, parathion, trifluralin, and vinclozolin, in the soils, were analyzed by chromatographic methods using GLC-ECD and HPLC-DAD/FLD. Limits of detection (LODs) of the test pesticides ranged from 0.0004 to 0.005 mg/kg. Recoveries of the target pesticides from soil ranged from 72.69 to 115.28%. Four pesticides including cypermethrin were detected in the range of from 0.001 to 2.019 mg/kg, representing that their detection rate from greenhouse soils was 37.5%. The highest detection rate was observed from endosulfan which was detected from 16 site soils of the total samples, indicating that endosulfan is persistent in soil because of its very low mobility and high adsorption characteristics in soil. Based on the groundwater ubiquity scores (GUSs) of the pesticides detected from greenhouse soils, most of them have little possibilities of groundwater contamination except the fungicide vinclozolin with some leaching potential because of high water solubility and very low soil adsorption property.

Control Efficacy of Mixing Application of Microbial and Chemical fungicide against Phytophthora blight of red-pepper (미생물농약과 유기합성 살균제 혼용에 따른 고추 역병 방제 효과)

  • Hong, Sung-Jun;Kim, Jung-Hyun;Kim, Yong-Ki;Jee, Hyeong-Jin;Shim, Chang-Ki;Kim, Min-Jeong;Park, Jong-Ho;Han, Eun-Jung;Goo, Hyung-Jin;Choi, Kwang-Young;Yun, Jong-Chul
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.460-467
    • /
    • 2013
  • This study was conducted to reduce the using amount of chemical fungicides for the control of red-pepper Phytophthora blight. Effect of combination application of two microbial fungicides and two chemical fungicides for the control of red-pepper Phytophthora blight was examined in vitro, in greenhouse and under field conditions. Each microbial fungicides and chemical fungicides was two-fold diluted and mixed-soil drenched. In the greenhouse pot assay, the mixed application of B. pumilus QST2808 and a mixture of dimethomorph + ethaboxam (De) among four mixed applications of two microbial fungicides (B. pumilus QST2808, P. polymyxa AC-1) and two chemical fungicides showed the highest control effect against Phytophthora blight. Also, control effect of mixed application of B. pumilus QST2808 and De was similar to that of single application of De (dimethomorph + ethaboxam) or Mo (mancozeb + oxadixyl). In the field test, when the microbial fungicides (B. pumilus QST2808, P. polymyxa AC-1) and the chemical fungicide(De) for the control of Phytophthora blight of red pepper were mixed-soil drenched four times at 7~10 day-intervals, the control values were in the range of 78.8% to 82.0%. On the other hand when each of the two chemical fungicides (De, Mo) were soil drenched four times at 7~10 day-intervals, the control value were 65.7% to 85.8%. Consequently, the mixed application of the microbial fungicides and chemical fungicides could be recommended as a control method for reducing the using amount of chemical fungicides.

Perspective of breaking stagnation of soybean yield under monsoon climate

  • Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.8-9
    • /
    • 2017
  • Soybean yield has been low and unstable in Japan and other areas in East Asia, despite long history of cultivation. This is contrasting with consistent increase of yield in North and South America. This presentation tries to describe perspective of breaking stagnation of soybean yield in East Asia, considering the factors of the different yields between regions. Large amount of rainfall with occasional dry-spell in the summer is a nature of monsoon climate and as frequently stated excess water is the factor of low and unstable soybean yield. For example, there exists a great deal of field-to-field variation in yield of 'Tanbaguro' soybean, which is reputed for high market value and thus cultivated intensively and this results in low average yield. According to our field survey, a major portion of yield variation occurs in early growth period. Soybean production on drained paddy fields is also vulnerable to drought stress after flowering. An analysis at the above study site demonstrated a substantial field-to-field variation of canopy transpiration activity in the mid-summer, but the variation of pod-set was not as large as that of early growth. As frequently mentioned by the contest winners of good practice farming, avoidance of excess water problem in the early growth period is of greatest importance. A series of technological development took place in Japan in crop management for stable crop establishment and growth, that includes seed-bed preparation with ridge and/or chisel ploughing, adjustment of seed moisture content, seed treatment with mancozeb+metalaxyl and the water table control system, FOEAS. A unique success is seen in the tidal swamp area in South Sumatra with the Saturated Soil Culture (SSC), which is for managing acidity problem of pyrite soils. In 2016, an average yield of $2.4tha^{-1}$ was recorded for a 450 ha area with SSC (Ghulamahdi 2017, personal communication). This is a sort of raised bed culture and thus the moisture condition is kept markedly stable during growth period. For genetic control, too, many attempts are on-going for better emergence and plant growth after emergence under excess water. There seems to exist two aspects of excess water resistance, one related to phytophthora resistance and the other with better growth under excess water. The improvement for the latter is particularly challenging and genomic approach is expected to be effectively utilized. The crop model simulation would estimate/evaluate the impact of environmental and genetic factors. But comprehensive crop models for soybean are mainly for cultivations on upland fields and crop response to excess water is not fully accounted for. A soybean model for production on drained paddy fields under monsoon climate is demanded to coordinate technological development under changing climate. We recently recognized that the yield potential of recent US cultivars is greater than that of Japanese cultivars and this also may be responsible for different yield trends. Cultivar comparisons proved that higher yields are associated with greater biomass production specifically during early seed filling, in which high and well sustained activity of leaf gas exchange is related. In fact, the leaf stomatal conductance is considered to have been improved during last a couple of decades in the USA through selections for high yield in several crop species. It is suspected that priority to product quality of soybean as food crop, especially large seed size in Japan, did not allow efficient improvement of productivity. We also recently found a substantial variation of yielding performance under an environment of Indonesia among divergent cultivars from tropical and temperate regions through in a part biomass productivity. Gas exchange activity again seems to be involved. Unlike in North America where transpiration adjustment is considered necessary to avoid terminal drought, under the monsoon climate with wet summer plants with higher activity of gas exchange than current level might be advantageous. In order to explore higher or better-adjusted canopy function, the methodological development is demanded for canopy-level evaluation of transpiration activity. The stagnation of soybean yield would be broken through controlling variable water environment and breeding efforts to improve the quality-oriented cultivars for stable and high yield.

  • PDF