• Title/Summary/Keyword: Management capability

Search Result 2,067, Processing Time 0.038 seconds

Knowledge-driven Dynamic Capability and Organizational Alignment: A Revelatory Historical Case

  • Kim, Gyeung-Min
    • Asia pacific journal of information systems
    • /
    • v.20 no.1
    • /
    • pp.33-56
    • /
    • 2010
  • The current business environment has been characterized as less munificent, highly uncertain and constantly evolving. In this environment, the company with dynamic capability is reported to be more successful than others in building competitive advantage. Dynamic capability focuses on the link between a dynamically changing environment, strategic agility, architectural reconfiguration, and value creation. Being characterized to be flexible and adaptive to market circumstance changes, an organization with dynamic capability is described to have high resource fluidity, which represents business process, resource allocation, human resource management and incentives that make business transformation faster and easier. Successful redeployment of the resources for dynamic adaptation requires organizational forms and reward systems to be well aligned with firm's technological infrastructures and business process. The alignment is considered to be an executive level commitment. Building dynamic capability is knowledge driven; relying on new knowledge to reconfigure firm's resources. Past studies established the link between the effective execution of a knowledge-focused strategy and relevant setting of architectural elements such as human resources, structure, process and information systems. They do not, however, describe in detail the underlying processes by which architectural elements are adjusted in coordinated manners to build knowledge-driven dynamic capability. In fact, understandings of these processes are one of the top issues in IT management. This study analyzed how a Korean corporation with a knowledge-focused strategy aligned its architectural elements to develop the dynamic capability and thus create value in the dynamically changing markets. When the Korean economy was in crisis, the company implemented a knowledge-focused strategy, restructured the organization's architecture by which human and knowledge resources are identified, structured, integrated and coordinated to identify and seize market opportunity. Specifically, the following architectural elements were reconfigured: human resource, decision rights, reward and evaluation systems, process, and IT infrastructure. As indicated by sales growth, the reconfiguration helped the company create value under an extremely turbulent environment. According to Ancona et al. (2001), depending on the types of lenses the organization uses, different types of architecture will emerge. For example, if an organization uses political lenses focusing on power, influence, and conflict. the architecture that leverage power and negotiate across multiple interest groups would emerge. Similarly, if an organization uses economic lenses focusing on the rational behavior of organizational actors making choices based on the costs and benefits of action, organizational architecture should be designed to motivate and provide incentives for the actors (Smith, 2001). Compared to this view, information processing perspectives consider architecture to be designed to maximize the capacity of information processing by the actors. Using knowledge lenses, the company studied in this research established architectural elements in a manner that allows the firm to effectively structure knowledge resources to form dynamic capability. This study is revelatory single case with a historic perspective. As a result of this study, a set of propositions and a framework are derived, which can be used for architectural alignment.

An Evaluation of Process Capability Using Degree of Conformance (적합성 정도를 이용한 공정능력의 평가)

  • Park, Sang-Gyu;Chung, Kyu-Ryun
    • Journal of Korean Society for Quality Management
    • /
    • v.24 no.1
    • /
    • pp.50-60
    • /
    • 1996
  • Though the quality characteristics within a specified tolerance are equally desired quality there is a difference in conformance between a specification limit and a target value. In this paper we propose a measure of process capability that takes into account the degree of conformance to a target value as well as the process variation.

  • PDF

Application of Normality Test and Classification of Process Capability Index (공정능력지수의 유형화 및 정규성 검정의 응용)

  • Choe, Seong-Un
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2011.11a
    • /
    • pp.551-556
    • /
    • 2011
  • This research presents an implementation strategy of Process Capability Index (PCI) according to the types of process characteristics. The types of process feature are classified as four perspectives of variation range, time period, error position, and process stage. The paper examines short-term or long-term PCI, within or between variation, position of precision or accuracy, and inclusion of measurement or calibration stage. Moreover, the study proposes normality test of unilateral PCI.

  • PDF

A Study on the Effect of Technological Innovation Capability and Technology Commercialization Capability on Business Performance in SMEs of Korea (우리나라 중소기업의 기술혁신능력과 기술사업화능력이 경영성과에 미치는 영향연구)

  • Lee, Dongsuk;Chung, Lakchae
    • Korean small business review
    • /
    • v.32 no.1
    • /
    • pp.65-87
    • /
    • 2010
  • With the advent of knowledge-based society, the revitalization of technological innovation type SMEs, termed "inno-biz" hereafter, has been globally recognized as a government policymakers' primary concern in strengthening national competitiveness, and much effort is being put into establishing polices of boosting the start-ups and innovation capability of SMEs. Especially, in that the inno-biz enables national economy to get vitalized by widening world markets with its superior technology, and thus, taking the initiative of extremely competitive world markets, its growth and development has greater significance. In the case of Korea, the government has been maintaining the policies since the late 1990s of stimulating the growth of SMEs as well as building various infrastructures to foster the start-ups of the SMEs such as venture businesses with high technology. In addition, since the enactment of "Innovation Promotion Law for SMEs" in 2001, the government has been accelerating the policies of prioritizing the growth and development of inno-biz. So, for the sound growth and development of Korean inno-biz, this paper intends to offer effective management strategies for SMEs and suggest proper policies for the government, by researching into the effect of technological innovation capability and technology commercialization capability as the primary business resources on business performance in Korean SMEs in the light of market information orientation. The research is carried out on Korean companies characterized as inno-biz. On the basis of OSLO manual and prior studies, the research categorizes their status. R&D capability, technology accumulation capability and technological innovation system are categorized into technological innovation capability; product development capability, manufacturing capability and marketing capability into technology commercialization capability; and increase in product competitiveness and merits for new technology and/or product development into business performance. Then the effect of each component on business performance is substantially analyzed. In addition, the mediation effect of technological innovation and technology commercialization capability on business performance is observed by the use of the market information orientation as a parameter. The following hypotheses are proposed. H1 : Technology innovation capability will positively influence business performance. H1-1 : R&D capability will positively influence product competitiveness. H1-2 : R&D capability will positively influence merits for new technology and/or product development into business performance. H1-3 : Technology accumulation capability will positively influence product competitiveness. H1-4 : Technology accumulation capability will positively influence merits for new technology and/or product development into business performance. H1-5 : Technological innovation system will positively influence product competitiveness. H1-6 : Technological innovation system will positively influence merits for new technology and/or product development into business performance. H2 : Technology commercializing capability will positively influence business performance. H2-1 : Product development capability will positively influence product competitiveness. H2-2 : Product development capability will positively influence merits for new technology and/or product development into business performance. H2-3 : Manufacturing capability will positively influence product competitiveness. H2-4 : Manufacturing capability will positively influence merits for new technology and/or product development into business performance. H2-5 : Marketing capability will positively influence product competitiveness. H2-6 : Marketing capability will positively influence merits for new technology and/or product development into business performance. H3 : Technology innovation capability will positively influence market information orientation. H3-1 : R&D capability will positively influence information generation. H3-2 : R&D capability will positively influence information diffusion. H3-3 : R&D capability will positively influence information response. H3-4 : Technology accumulation capability will positively influence information generation. H3-5 : Technology accumulation capability will positively influence information diffusion. H3-6 : Technology accumulation capability will positively influence information response. H3-7 : Technological innovation system will positively influence information generation. H3-8 : Technological innovation system will positively influence information diffusion. H3-9 : Technological innovation system will positively influence information response. H4 : Technology commercialization capability will positively influence market information orientation. H4-1 : Product development capability will positively influence information generation. H4-2 : Product development capability will positively influence information diffusion. H4-3 : Product development capability will positively influence information response. H4-4 : Manufacturing capability will positively influence information generation. H4-5 : Manufacturing capability will positively influence information diffusion. H4-6 : Manufacturing capability will positively influence information response. H4-7 : Marketing capability will positively influence information generation. H4-8 : Marketing capability will positively influence information diffusion. H4-9 : Marketing capability will positively influence information response. H5 : Market information orientation will positively influence business performance. H5-1 : Information generation will positively influence product competitiveness. H5-2 : Information generation will positively influence merits for new technology and/or product development into business performance. H5-3 : Information diffusion will positively influence product competitiveness. H5-4 : Information diffusion will positively influence merits for new technology and/or product development into business performance. H5-5 : Information response will positively influence product competitiveness. H5-6 : Information response will positively influence merits for new technology and/or product development into business performance. H6 : Market information orientation will mediate the relationship between technology innovation capability and business performance. H7 : Market information orientation will mediate the relationship between technology commercializing capability and business performance. The followings are the research results : First, as for the effect of technological innovation on business performance, the technology accumulation capability and technological innovating system have a positive effect on increase in product competitiveness and merits for new technology and/or product development, while R&D capability has little effect on business performance. Second, as for the effect of technology commercialization capability on business performance, the effect of manufacturing capability is relatively greater than that of merits for new technology and/or product development. Third, the mediation effect of market information orientation is identified to exist partially in information generation, information diffusion and information response. Judging from these results, the following analysis can be made : On Increase in product competitiveness, directly related to successful technology commercialization of technology, management capability including technological innovation system, manufacturing capability and marketing capability has a relatively strong effect. On merits for new technology and/or product development, on the other hand, capability in technological aspect including R&D capability, technology accumulation capability and product development capability has relatively strong effect. Besides, in the cast of market information orientation, the level of information diffusion within an organization plays and important role in new technology and/or product development. Also, for commercial success like increase in product competitiveness, the level of information response is primarily required. Accordingly, the following policies are suggested : First, as the effect of technological innovation capability and technology commercialization capability on business performance differs among SMEs; in order for SMEs to secure competitiveness, the government has to establish microscopic policies for SMEs which meet their needs and characteristics. Especially, the SMEs lacking in capital and labor are required to map out management strategies of focusing their resources primarily on their strengths. And the government needs to set up policies for SMEs, not from its macro-scaled standpoint, but from the selective and concentrative one that meets the needs and characteristics of respective SMEs. Second, systematic infrastructures are urgently required which lead technological success to commercial success. Namely, as technological merits at respective SME levels do not always guarantee commercial success, the government should make and effort to build systematic infrastructures including encouragement of M&A or technology trade, systematic support for protecting intellectual property, furtherance of business incubating and industrial clusters for strengthening academic-industrial network, and revitalization of technology financing, in order to make successful commercialization from technological success. Finally, the effort to innovate technology, R&D, for example, is essential to future national competitiveness, but its result is often prolonged. So the government needs continuous concern and funding for basic science, in order to maximize technological innovation capability. Indeed the government needs to examine continuously whether technological innovation capability or technological success leads satisfactorily to commercial success in market economic system. It is because, when the transition fails, it should be left to the government.

Industrial Cluster System, and Entrepreneurship, RandD Capability and Technological Innovation of SMEs (산업클러스터의 체계성과 중소기업의 기업가정신, R&D역량 및 기술혁신)

  • Shin, Jin-Kyo;Im, Chae-Hyon
    • Management & Information Systems Review
    • /
    • v.33 no.2
    • /
    • pp.171-188
    • /
    • 2014
  • Previous researches on technological innovation of SMEs have several limitations such as lack of study for industrial cluster system and entrepreneurship in SMEs, and ignoring role of RandD capability. So, this study suggested empirically a new model to SMEs. Major results are as follows. Firstly, system of industry and production had a significant and positive effect on entrepreneurship. Secondly, entrepreneurship had a significant and positive effect on technological innovation. Thirdly, system of science and technology had positive and significant effects on RandD capability and technological innovation. Fourthly, RandD capability had a positive and significant effect on technological innovation. Fifthly, business support system was not significantly related to entrepreneurship, RandD capability and technological innovation. Research results revealed that industrial cluster system(system of industry and production, system of science and technology), entrepreneurship and RandD capability were important for improvement of technological innovation performance in SMEs.

  • PDF

Study on the Innovation Process of the Satellite Industry (인공위성 산업의 기술혁신 과정에 관한 연구)

  • Seol, Myung Hwan;Choi, Jong-In
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.9 no.6
    • /
    • pp.117-128
    • /
    • 2014
  • This is the case study of SATREC INITIATIVE company which is the unique domestic production of commercial satellites. We examined the path and pattern for accumulation of technological capability and technology learning process. This case study show that the process of technological innovation and their influencing factors. First, the technological learning of the satellite industry follows the stage of technological acquisition, absorption, improvement and is embodied by the technological capability. Second, accumulated technological capability of the satellite industry influences the technology innovation. Third, the top management team(TMT) affects the technological learning and technological capability. Fourth, TMT has a moderating role between the technological capability and the performance of technological innovation. Finally, technological innovations in the small and venture business would be the source of technological capability and technological learning. The implications of this study are as follows. TMT has the very important role for the technological innovation and affect the technology development and the production. Also technology-based companies must gain a competitiveness advantage through technological learning and technological innovations for sustainable growth.

  • PDF

Analysis of Multivariate Process Capability Using Box-Cox Transformation (Box-Cox변환을 이용한 다변량 공정능력 분석)

  • Moon, Hye-Jin;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.2
    • /
    • pp.18-27
    • /
    • 2019
  • The process control methods based on the statistical analysis apply the analysis method or mathematical model under the assumption that the process characteristic is normally distributed. However, the distribution of data collected by the automatic measurement system in real time is often not followed by normal distribution. As the statistical analysis tools, the process capability index (PCI) has been used a lot as a measure of process capability analysis in the production site. However, PCI has been usually used without checking the normality test for the process data. Even though the normality assumption is violated, if the analysis method under the assumption of the normal distribution is performed, this will be an incorrect result and take a wrong action. When the normality assumption is violated, we can transform the non-normal data into the normal data by using an appropriate normal transformation method. There are various methods of the normal transformation. In this paper, we consider the Box-Cox transformation among them. Hence, the purpose of the study is to expand the analysis method for the multivariate process capability index using Box-Cox transformation. This study proposes the multivariate process capability index to be able to use according to both methodologies whether data is normally distributed or not. Through the computational examples, we compare and discuss the multivariate process capability index between before and after Box-Cox transformation when the process data is not normally distributed.

Analysis of Impact on Disaster Prevention Capability of Residents in Resident Participation Safety Improvement Project -Focused on Project of Creating a Safety Village in Sindeok, Daegu- (주민참여형 안전개선사업이 주민방재역량에 미치는 영향분석 -대구 신덕 안전마을 만들기 사업을 중심으로-)

  • Yoon, Sanghoon;Park, Sosoon
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.758-767
    • /
    • 2020
  • Purpose: The purpose of this study is to analyze the impact of disaster prevention capability of residents according to before and after resident participation safety improvement project and to present implication. Method: The difference in disaster prevention capability of residents before-after project was compared and analyze using the independent sample t-test. Result: As a result of analysis, it was found that the resident participation safety improvement project had an effect on the disaster prevention capability of residents before-after project. Among them, the parts related to degree of preparation of evacuation and organizational disaster prevention capability were found to have a positive effect Conclusion: When promoting a resident participation safety improvement project, it is necessary to explore and consider various ways to improve the disaster prevention capability of residents and regions.