• Title/Summary/Keyword: Management area in non-point source

Search Result 109, Processing Time 0.026 seconds

Analysing the effect of impervious cover management techniques on the reduction of runoff and pollutant loads (불투수면 저감기법의 유출량 및 오염부하량 저감 효과 분석)

  • Park, Hyung Seok;Choi, Hwan Gyu;Chung, Se Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.1
    • /
    • pp.16-34
    • /
    • 2015
  • Impervious covers(IC) are artificial structures, such as driveways, sidewalks, building's roofs, and parking lots, through which water cannot infiltrate into the soil. IC is an environmental concern because the pavement materials seal the soil surface, decreasing rainwater infiltration and natural groundwater recharge, and consequently disturb the hydrological cycle in a watershed. Increase of IC in a watershed can cause more frequent flooding, higher flood peaks, groundwater drawdown, dry river, and decline of water quality and ecosystem health. There has been an increased public interest in the institutional adoption of LID(Low Impact Development) and GI(Green Infrastructure) techniques to address the adverse impact of IC. The objectives of this study were to construct the modeling site for a samll urban watershed with the Storm Water Management Model(SWMM), and to evaluate the effect of various LID techniques on the control of rainfall runoff processes and non-point pollutant load. The model was calibrated and validated using the field data collected during two flood events on July 17 and August 11, 2009, respectively, and applied to a complex area, where is consist of apartments, school, roads, park, etc. The LID techniques applied to the impervious area were decentralized rainwater management measures such as pervious cover and green roof. The results showed that the increase of perviousness land cover through LID applications decreases the runoff volume and pollutants loading during flood events. In particular, applications of pervious pavement for parking lots and sidewalk, green roof, and their combinations reduced the total volume of runoff by 15~61 % and non-point pollutant loads by TSS 22~72 %, BOD 23~71 %, COD 22~71 %, TN 15~79 %, TP 9~64 % in the study site.

Sediment Unit Loads from Developing Areas during Storms (개발사업장에서의 강우시 토사 유출원단위 산정)

  • Kim, Cheol Min;Lee, Eun Ju;Lee, So Young;Kim, Young Chol;Kim, Lee Hyung
    • Journal of Wetlands Research
    • /
    • v.10 no.1
    • /
    • pp.59-68
    • /
    • 2008
  • Three phases of development in construction projects (i.e. pre-development, construction and post construction) diversely effect the environment, hydraulics and ecosystem. Currently, the domestic environmental policy is in control of the various environmental hazards produced after completion of development operations. Nevertheless, with the enforcement of water pollution total amount management system, improving the water quality; also the water and ecosystem preservation law recommends enforcing the sediment management for development operations in order to lessen the negative impacts to the environment. Recently, the country is experiencing difficulties in various development project locations due to insufficiency of interpreting the fundamental data for sediment loss and miscalculation of soil loss unit loads of sediment. This research utilizes data from 2000 to 2005 discussing a total of 1,036 environment impact assessment projects gathered from various ministries and offices namely Ministry of Environment (MOE), Ministry of Agriculture, the Office of Forestry, and Ministry of Construction and Transportation. Moreover, quantity of sediment from high land agriculture reports involving contaminant discharge characteristic investigation previously did concerning old land agriculture and So-Yang lake non-point pollution source management area as well as management measured data from MOE. The findings of this study reveal that the highest soil loss rate occurred from mountain district for pre-development and post construction and sports facility during construction.

  • PDF

Study on Analysis of the Proper Ratio and the Effects of Low Impact Development Application to Sewage Treatment District (하수처리구역 내 LID 적용에 대한 적정비율 및 효과분석 연구)

  • Shin, Hyun Suk;Kim, Mi Eun;Kim, Jae Moon;Jang, Jong Kyung
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1193-1207
    • /
    • 2013
  • Increase of impervious area caused by overdevelopment has led to increase of runoff and then the problem of flooding and NPS were brought up. In addition, as decrease of base flow made groundwater level to decline, a stream that dries up is issued. low impact development (LID) method which is possible to mimic hydrological water cycle, minimize the effect of development, and improve water cycle structure is proposed as an alternative. As introduction of LID in domestic increases, the study on small watershed is in process mainly. Also, analysis of property of hydrological runoff and load on midsize watershed, like sewage treatment district, is required, the study on it is still insufficient. So, area applying LID practices from watershed of Dongrae stream is pinpointed and made the ratio and then expand it to watershed of Oncheon stream. Among low impact development practices, Green Roof, Porous Pavement, and Bio- retention are selected for the application considering domestic situations and simulated with SWMM-LID model of each watershed and improvement of water cycle and reduction of non-point pollution loads was analysed. Improvement of water cycle and reduction of non-point pollution loads were analyzed including the property of rainfall and soil over long term simulation. The model was executed according to scenario based on combination of LID as changing conductivity in accordance with soil type of the watershed. Also, this study evaluated area of LID application that meets the efficiency of conventional management as a criteria for area of LID practices applying to sewer treatment district by comparing the efficiency of LID application with that of conventional method.

Developing Evaluation Index and Item for Water Environment Improvement of Gyeongin ARA Waterway (경인 아라뱃길의 물환경 개선을 위한 오염원인 평가항목 및 지표 개발)

  • Lee, Kyung-Su;Kim, Tae-Hyeong
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.8
    • /
    • pp.469-482
    • /
    • 2018
  • This research has developed the criteria and index for systematically and objectively assessing the quality of river water by fixing the various factors that affect Gyeongin ARA waterway's water quality through analysis with the Delphi Technique and analytic hierarchy program (AHP) Method. Based on the results, the highest criteria are, in order of importance, physical and environmental factors 28%, administrative factors 26%, natural fixed factors 26% and finally, cultural and social factors 20%. The three dimensions of the criteria show that for the internal physical and environmental factors, the most important are the loss of self-purification capacity, and the external factors are Gulpocheon and the sludge deposit due to Gyulhweon-weir the bridge. The facility factor in management was affected by the coagulation and waste water disposal facilities. The problem for the policy and institutional factors was seen in the regulatory area. The aquatic ecology/ point pollution source for the natural fixed factors show that it is due to the polluted water of Gulpo-cheon and the living environment/ non-point pollution source is shown through the inflow water from other rivers. Cultural and social factors show that the economical causes were due to the cargo and passenger flight operations and the external factors of having a lack of sewage treatment equipment have an importance effect. In order to estimate the order of priority through logical evidence and objectivity, future research must be continued on the evaluation indexes to measure the specific methodology and technique needed to improve the Gyeongin ARA Waterway.

Application of Free Water Surface Constructed Wetland for NPS Control in Livestock Watershed Area (축산단지 비점오염물질 저감을 위한 자유수면형 인공습지 적용)

  • Lee, Jeong-Yong;Kang, Chang-Guk;Lee, So-Young;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.481-488
    • /
    • 2011
  • Various development activities have lead to the destruction of the ecosystem such as natural wetlands. In order to protect these natural wetlands, the Ministry of Environment (MOE) in Korea enacted the Wetland Conservation Act in 1999 and designated protected areas for wetland conservation. The MOE adapted the use of Best Management Practices (BMP) such as retention ponds and constructed wetlands to treat the polluted water before entering the water system. One of these projects was a free-water surface flow (FWS) constructed wetland built as a secondary treatment unit for piggery wastewater effluent coming from a livestock wastewater treatment facility. Water quality monitoring for the constructed wetland was conducted during rainfall events. The results showed that the average removal efficiencies of TSS, BOD, TN, TP were 86, 60, 45, 70%, respectively. It was observed that the removal efficiency of particulate matter and phosphorus was high compared to nitrogen. Therefore, a longer hydraulic retention time was needed in order to improve the treatment efficiency of nitrogen. The results of this study can contribute to the wetland design, operation and maintenance of constructed wetlands.

Runoff Characteristics of Stormwater in Small City Urban Area (국내 중소 도시지역 강우유출수의 유출특성)

  • Lee, Hong-Shin;Lee, Seung-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.3
    • /
    • pp.193-202
    • /
    • 2009
  • This study was conducted to identify the magnitude of first flush in small city urban area and to provide the basic information on the criteria of stormwater runoff management. Monitoring site was surrounded by residential area in Gumi city near to national industrial complex and the monitoring period was three months. Total watershed area was 24.9 ha, where 80% of the area is impervious (asphalt of pavement type). Periodic monitoring of conventional water quality parameters were conducted with six times of rainfall period. Event mean and site mean concentrations for all the parameters were calculated based on the analytical results. Particle size distribution was 9.82 ${\mu}m$ for $D_{0.1}$, 38.99 ${\mu}m$ for $D_{0.5}$ and 159.61 ${\mu}m$ for $D_{0.9}$ respectively. First flush phenomenon was detected highly in particulate solids than dissolved ones. The first flush criteria results by mass first flush contained between 44.4% to 58.5% pollutant mass during the first 30% of runoff volume. Mass first flush ratio and particle size distribution obtained in this study are expected to provide the basic information for the design and operation of non-point source treatment facility.

Characteristics and EMCs of NPS Pollutants Runoff from a Forest-Paddy Composite Watershed (산림논복합 소유역에서의 비점부하 강우유출 특성 및 EMC 산정)

  • Song, In-Hong;Kang, Moon-Seong;Hwang, Soon-Ho;Song, Jung-Hun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.9-17
    • /
    • 2012
  • This study was aimed to characterize non-point source (NPS) pollutant runoff and estimate event mean concentrations (EMCs) from a small rural watershed located at the headwater area of the Gyeongan stream. The study watershed consists of the two major landuse, forest (72 %) and paddy field (28 %). The nine rainfall events ranging from 18.5 to 192.6 mm in amount were monitored in this study. Stream flow was measured at the watershed outlet using a water level gauge, while a number of water samples for each event were collected and analysed for water quality. Event pollutant loads varied greatly depending on rainfall events varying from 22.6 to 3,134.2 mg/L, 0.32 to 24.56 mg/L, 0.090 to 1.320 mg/L, and 2.3 to 149.8 mg/L for SS, TN, TP, and COD, correspondently. The respective mean EMCs were estimated by 104.2, 1.00, 0.168, and 7.9 mg/L. The Pearson correlation analysis showed that COD EMC was significantly correlated with those of SS, TN, and TP. Rainfall runoff ratio appeared to be negatively correlated with EMCs of SS, TP, and COD, although not statistically significant. The event loads from the largest rainfall was greater than the sum of those from the remaining eight events. The study results suggest that the appropriate management of intensified storm events are of greater importance in curbing NPS loads, while the estimated EMCs provide base data for the unit pollutant loads determination for the forest-paddy composite upstream watershed.

The Monitoring of Growth Conditions Regarding Korea Endemic Species and Natural Characteristics - Applied to Facilities Area on Highway Roadside - (한국특산식물 및 종의 자생지 특성을 고려한 식재 후 생육상태 모니터링 - 고속도로변 시설지를 대상으로 -)

  • Park, Sung-Su;Hong, Kwang-Woo;Kim, Sae-Cheon;Lee, Hyo-Yeom
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.6
    • /
    • pp.1-9
    • /
    • 2017
  • This study investigates the environmental factors of endemic species in Korea in order to understand their ecological characteristics, and to investigate the target species of their natural habitats to find similar sites. The purpose is to restore and follow suitable growth methods for the appropriate highway facility of target species to establish a management system via monitoring. This study endeavors to restore the target species near highway facilities on the basis of monitoring data and restore sites have similar natural characteristics of the target species. After restoring the target species, a restoration strategy and management plan will be established for breeding and continuation. The restoration strategy and management plan of the target species is divided into breeding, restoring, maintaining and monitoring plans. Specially management plans include several divisions such as soil, water, non-point pollution source reduction and naturalized plants. The results of this study can be used as reference materials for the restoration of endemic Korean plants in the future of highway routes, and for systematic management measures in habitats.

Application of Automatic Stormwater Monitoring System and SWMM Model for Estimation of Urban Pollutant Loading During Storm Events (빗물 자동모니터링장치와 SWMM 모델을 이용한 강우시 도시지역 오염부하량 예측에 관한 연구)

  • Seo, Dongil;Fang, Tiehu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.6
    • /
    • pp.373-381
    • /
    • 2012
  • An automatic flow and water quality monitoring system was applied to estimate pollutant loads to an urban stream during storm events in DTV (Daeduk Techno Valley), Daejeon, Korea. The monitoring system consists of rainfall gage, ultrasonic water level meter, water quality sensors for DO, temperature, pH, conductivity, turbidity and automatic water sampler for further laboratory analysis. All data are transmitted through on-line system and the monitoring system is designed to be controlled manually in the field and remotely from laboratory computer. Flow rates were verified with field measurements during storm events and showed good agreements. Automatic sampler was used to collect real time samples and analyzed for BOD, COD, TN, TP, SS and other pollutant concentrations in the laboratory. SWMM (Storm Water Management Model) urban watershed model was applied and calibrated using the observed flow and water quality data for the study area. While flow modeling results showed good agreement for all events, water quality modeling results showed variable levels of agreement. These results indicate that current options in the SWMM model to predict pollutant build up and wash-off effects are not sufficient to satisfy modeling of all the rainfall events under study and thus need further modification. This study showed the automatic monitoring system can be used to provide data to assist further refinement of modeling accuracy. This automatic stormwater monitoring and modeling system can be used to develop basin scale water quality management strategies of urban streams in storm events.

Groundwater Quality in the Shallow Aquifer at the Plastic Film Houses Area near Livestock Area in Kyongan River Basin (경안천유역내 축산단지 인근 시설원예지역의 천층지하수 수질특성)

  • 김진호;문광현;안승구
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.3
    • /
    • pp.77-85
    • /
    • 2001
  • This study was carried out to show the groundwater quality in the shallow aquifer at the plastic film houses area near livestock areas in Kyong=n river. The study was conducted at 31 sites in Pogok Myon. Yongin City, Kyonggi Province on March, June and August in 1998, Medium value of CO $D_{cr}$ by survey months was as follows ; June(8.0mg/L) > April(4.4mg/L) > August(3.2mg/L). And the value of $NH_3$-N showed same tendency ; June (0.21mg/L) > April(0.08mg/L) > August (0.04mg/L). In case of nitrate- nitrogen, the changes by survey months were shown similar. But 28% of survey sites exceeded to agricultural groundwater quality reference level(20mg/L). And sulfur concentrations at some survey sites exceeded the reference level(50mg/L). But the other items of water quality were shown to suitable level for agriculture. The result showed that groundwater quality management should be taken for agricultural using at the livestock and plastic film house areas.

  • PDF