• Title/Summary/Keyword: Mammalian Target of Rapamycin Complex 1 [mTORC1]

Search Result 9, Processing Time 0.024 seconds

Rapamycin Inhibits Expression of Elongation of Very-long-chain Fatty Acids 1 and Synthesis of Docosahexaenoic Acid in Bovine Mammary Epithelial Cells

  • Guo, Zhixin;Wang, Yanfeng;Feng, Xue;Bao, Chaogetu;He, Qiburi;Bao, Lili;Hao, Huifang;Wang, Zhigang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.11
    • /
    • pp.1646-1652
    • /
    • 2016
  • Mammalian target of rapamycin complex 1 (mTORC1) is a central regulator of cell growth and metabolism and is sufficient to induce specific metabolic processes, including de novo lipid biosynthesis. Elongation of very-long-chain fatty acids 1 (ELOVL1) is a ubiquitously expressed gene and the product of which was thought to be associated with elongation of carbon (C) chain in fatty acids. In the present study, we examined the effects of rapamycin, a specific inhibitor of mTORC1, on ELOVL1 expression and docosahexaenoic acid (DHA, C22:6 n-3) synthesis in bovine mammary epithelial cells (BMECs). We found that rapamycin decreased the relative abundance of ELOVL1 mRNA, ELOVL1 expression and the level of DHA in a time-dependent manner. These data indicate that ELOVL1 expression and DHA synthesis are regulated by mTORC1 in BMECs.

The Effect of L-Ornithine on the Phosphorylation of mTORC1 Downstream Targets in Rat Liver

  • Kokubo, Takeshi;Maeda, Shyuichi;Tazumi, Kyoko;Nozawa, Hajime;Miura, Yutaka;Kirisako, Takayoshi
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.4
    • /
    • pp.238-245
    • /
    • 2015
  • A non-protein amino acid, L-ornithine (Orn), has been shown to stimulate the urea cycle and tissue protein synthesis in the liver. The purpose of the current study was to assess whether Orn affects the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) pathway, which is involved in protein synthesis. Primary cultured cells isolated from Wistar rat liver were incubated in an amino acid-free medium, followed by addition of Orn for 3 h. The cell lysate was subjected to immunoblotting to evaluate the phosphorylation of downstream targets of mTORC1, including p70S6K, S6, and 4EBP1. To assess the involvement of mTORC1 for the effect of Orn, the cells were pretreated with the mTOR inhibitor rapamycin before the addition of Orn and the cell lysate was subjected to immunoblotting. We next examined whether the effects of Orn were exerted in vivo. Orn was orally administered to 18 h food-deprived rats, the blood and the livers were collected at 1 and 3 h after administration for immunoblotting. Orn treatment for primary cultured cells for 3 h enhanced the phosphorylation of p70S6K, S6, and 4EBP1. In addition, rapamycin blocked the effects of Orn completely (p70S6K and S6) or partially (4EBP1). The oral administration of Orn to the rat also augmented the phosphorylation of mTORC1 downstream targets notably in S6 at 1 h. Our findings demonstrate that Orn has the potential to induce the phosphorylation of downstream targets of mTORC1 in the rat liver. This may be mediated by the augmentation of mTORC1 activity.

Erratum to: Upstream signalling of mTORC1 and its hyperactivation in type 2 diabetes (T2D)

  • Ali, Muhammad;Bukhari, Shazia Anwer;Ali, Muhammad;Lee, Han-Woong
    • BMB Reports
    • /
    • v.51 no.1
    • /
    • pp.45-53
    • /
    • 2018
  • Mammalian target of rapamycin complex 1 (mTORC1) plays a major role in cell growth, proliferation, polarity, differentiation, development, and controls transitioning between anabolic and catabolic states of the cell. It collects almost all extracellular and intracellular signals from growth factors, nutrients, and maintains cellular homeostasis, and is involved in several pathological conditions including, neurodegeneration, Type 2 diabetes (T2D), obesity, and cancer. In this review, we summarize current knowledge of upstream signaling of mTORC1 to explain etiology of T2D and hypertriglyceridemia, in which state, the role of telomere attrition is explained. We discuss if chronic inhibition of mTORC1 can reverse adverse effects resulting from hyperactivation. In conclusion, we suggest the regulatory roles of telomerase (TERT) and hexokinase II (HKII) on mTORC1 as possible remedies to treat hyperactivation. The former inhibits mTORC1 under nutrient-rich while the latter under starved condition. We provide an idea of TOS (TOR signaling) motifs that can be used for regulation of mTORC1.

Upstream signalling of mTORC1 and its hyperactivation in type 2 diabetes (T2D)

  • Ali, Muhammad;Bukhari, Shazia Anwer;Ali, Muhammad;Lee, Han-Woong
    • BMB Reports
    • /
    • v.50 no.12
    • /
    • pp.601-609
    • /
    • 2017
  • Mammalian target of rapamycin complex 1 (mTORC1) plays a major role in cell growth, proliferation, polarity, differentiation, development, and controls transitioning between anabolic and catabolic states of the cell. It collects almost all extracellular and intracellular signals from growth factors, nutrients, and maintains cellular homeostasis, and is involved in several pathological conditions including, neurodegeneration, Type 2 diabetes (T2D), obesity, and cancer. In this review, we summarize current knowledge of upstream signaling of mTORC1 to explain etiology of T2D and hypertriglyceridemia, in which state, the role of telomere attrition is explained. We discuss if chronic inhibition of mTORC1 can reverse adverse effects resulting from hyperactivation. In conclusion, we suggest the regulatory roles of telomerase (TERT) and hexokinase II (HKII) on mTORC1 as possible remedies to treat hyperactivation. The former inhibits mTORC1 under nutrientrich while the latter under starved condition. We provide an idea of TOS (TOR signaling) motifs that can be used for regulation of mTORC1.

Mechanisms of amino acid sensing in mTOR signaling pathway

  • Kim, Eun-Jung
    • Nutrition Research and Practice
    • /
    • v.3 no.1
    • /
    • pp.64-71
    • /
    • 2009
  • Amino acids are fundamental nutrients for protein synthesis and cell growth (increase in cell size). Recently, many compelling evidences have shown that the level of amino acids is sensed by extra- or intra-cellular amino acids sensor(s) and regulates protein synthesis/degradation. Mammalian target of rapamycin complex 1 (mTORC1) is placed in a central position in cell growth regulation and dysregulation of mTOR signaling pathway has been implicated in many serious human diseases including cancer, diabetes, and tissue hypertrophy. Although amino acids are the most potent activator of mTORC1, how amino acids activate mTOR signaling pathway is still largely unknown. This is partly because of the diversity of amino acids themselves including structure and metabolism. In this review, current proposed amino acid sensing mechanisms to regulate mTORC1 and the evidences pro/against the proposed models are discussed.

The functions of mTOR in ischemic diseases

  • Hwang, Seo-Kyoung;Kim, Hyung-Hwan
    • BMB Reports
    • /
    • v.44 no.8
    • /
    • pp.506-511
    • /
    • 2011
  • Mammalian Target of Rapamycin (mTOR) is a serine/threonine kinase and that forms two multiprotein complexes known as the mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTOR regulates cell growth, proliferation and survival. mTORC1 is composed of the mTOR catalytic subunit and three associated proteins: raptor, mLST8/$G{\beta}L$ and PRAS40. mTORC2 contains mTOR, rictor, mLST8/$G{\beta}L$, mSin1, and protor. Here, we discuss mTOR as a promising anti-ischemic agent. It is believed that mTORC2 lies down-stream of Akt and acts as a direct activator of Akt. The different functions of mTOR can be explained by the existence of two distinct mTOR complexes containing unique interacting proteins. The loss of TSC2, which is upstream of mTOR, activates S6K1, promotes cell growth and survival, activates mTOR kinase activities, inhibits mTORC1 and mTORC2 via mTOR inhibitors, and suppresses S6K1 and Akt. Although mTOR signaling pathways are often activated in human diseases, such as cancer, mTOR signaling pathways are deactivated in ischemic diseases. From Drosophila to humans, mTOR is necessary for Ser473 phosphorylation of Akt, and the regulation of Akt-mTOR signaling pathways may have a potential role in ischemic disease. This review evaluates the potential functions of mTOR in ischemic diseases. A novel mTOR-interacting protein deregulates over-expression in ischemic disease, representing a new mechanism for controlling mTOR signaling pathways and potential therapeutic strategies for ischemic diseases.

Inhibition of VRK1 suppresses proliferation and migration of vascular smooth muscle cells and intima hyperplasia after injury via mTORC1/β-catenin axis

  • Sun, Xiongshan;Zhao, Weiwei;Wang, Qiang;Zhao, Jiaqi;Yang, Dachun;Yang, Yongjian
    • BMB Reports
    • /
    • v.55 no.5
    • /
    • pp.244-249
    • /
    • 2022
  • Characterized by abnormal proliferation and migration of vascular smooth muscle cells (VSMCs), neointima hyperplasia is a hallmark of vascular restenosis after percutaneous vascular interventions. Vaccinia-related kinase 1 (VRK1) is a stress adaption-associated ser/thr protein kinase that can induce the proliferation of various types of cells. However, the role of VRK1 in the proliferation and migration of VSMCs and neointima hyperplasia after vascular injury remains unknown. We observed increased expression of VRK1 in VSMCs subjected to platelet-derived growth factor (PDGF)-BB by western blotting. Silencing VRK1 by shVrk1 reduced the number of Ki-67-positive VSMCs and attenuated the migration of VSMCs. Mechanistically, we found that relative expression levels of β-catenin and effectors of mTOR complex 1 (mTORC1) such as phospho (p)-mammalian target of rapamycin (mTOR), p-S6, and p-4EBP1 were decreased after silencing VRK1. Restoration of β-catenin expression by SKL2001 and re-activation of mTORC1 by Tuberous sclerosis 1 siRNA (siTsc1) both abolished shVrk1-mediated inhibitory effect on VSMC proliferation and migration. siTsc1 also rescued the reduced expression of β-catenin caused by VRK1 inhibition. Furthermore, mTORC1 re-activation failed to recover the attenuated proliferation and migration of VSMC resulting from shVrk1 after silencing β-catenin. We also found that the vascular expression of VRK1 was increased after injury. VRK1 inactivation in vivo inhibited vascular injury-induced neointima hyperplasia in a β-catenin-dependent manner. These results demonstrate that inhibition of VRK1 can suppress the proliferation and migration of VSMC and neointima hyperplasia after vascular injury via mTORC1/β-catenin pathway.

Genistein alleviates pulmonary fibrosis by inactivating lung fibroblasts

  • Seung-hyun Kwon;Hyunju Chung;Jung-Woo Seo;Hak Su Kim
    • BMB Reports
    • /
    • v.57 no.3
    • /
    • pp.143-148
    • /
    • 2024
  • Pulmonary fibrosis is a serious lung disease that occurs predominantly in men. Genistein is an important natural soybean-derived phytoestrogen that affects various biological functions, such as cell migration and fibrosis. However, the antifibrotic effects of genistein on pulmonary fibrosis are largely unknown. The antifibrotic effects of genistein were evaluated using in vitro and in vivo models of lung fibrosis. Proteomic data were analyzed using nano-LC-ESI-MS/MS. Genistein significantly reduced transforming growth factor (TGF)-β1-induced expression of collagen type I and α-smooth muscle actin (SMA) in MRC-5 cells and primary fibroblasts from patients with idiopathic pulmonary fibrosis (IPF). Genistein also reduced TGF-β1-induced expression of p-Smad2/3 and p-p38 MAPK in fibroblast models. Comprehensive protein analysis confirmed that genistein exerted an anti-fibrotic effect by regulating various molecular mechanisms, such as unfolded protein response, epithelial mesenchymal transition (EMT), mammalian target of rapamycin complex 1 (mTORC1) signaling, cell death, and several metabolic pathways. Genistein was also found to decrease hydroxyproline levels in the lungs of BLM-treated mice. Genistein exerted an anti-fibrotic effect by preventing fibroblast activation, suggesting that genistein could be developed as a pharmacological agent for the prevention and treatment of pulmonary fibrosis.

Keratinization of Lung Squamous Cell Carcinoma Is Associated with Poor Clinical Outcome

  • Park, Hye Jung;Cha, Yoon-Jin;Kim, Seong Han;Kim, Arum;Kim, Eun Young;Chang, Yoon Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.80 no.2
    • /
    • pp.179-186
    • /
    • 2017
  • Background: Although the World Health Organization (WHO) classification of lung squamous cell carcinoma (SCC) was revised in 2015, its clinical implications for lung SCC subsets remain unclear. We investigated whether the morphologic characteristics of lung SCC, including keratinization, were associated with clinical parameters and clinical outcome of patients. Methods: A total of 81 patients who underwent curative surgical resection of diagnosed lung SCC, were enrolled in this study. Attributes such as keratinization, tumor budding, single cell invasion, and nuclear size within the tumor, as well as immunohistochemistry of Bcl-xL and pS6 expressions, were evaluated. Results: The keratinizing and nonkeratinizing subtypes did not differ with respect to age, sex, TNM stage, and morphologic parameters such as nuclear diameter, tumor budding, and single cell invasion at the tumor edge. Most patients with the keratinizing subtype (98.0%) had a history of smoking, whereas the nonkeratinizing group had a relatively higher proportion of never-smokers relative to the keratinizing group (24.0% vs. 2.0%; p=0.008, chi-square test). Expression of pS6 (a surrogate marker of mammalian target of rapamycin complex 1 [mTORC1] signaling that regulates keratinocyte differentiation), and Bcl-xL (a key anti-apoptotic molecule that may inhibit keratinization), did not correlate significantly with the presence of keratinization. Patients with the keratinizing subtype had a significantly shorter overall survival (85.2 months vs. 135.7 months, p=0.010, log-rank test), and a multivariate analysis showed that keratinization was an independent, poor prognostic factor (hazard ratio, 2.389; 95% confidence interval, 1.090-5.233; p=0.030). Conclusion: In lung SCC, keratinization is associated with a poor prognosis, and might be associated with smoking.