• Title/Summary/Keyword: Malware Detection System

Search Result 118, Processing Time 0.024 seconds

How to Detect and Block Ransomware with File Extension Management in MacOS (MacOS에서 파일확장자 관리를 통한 랜섬웨어 탐지 및 차단 방법)

  • Youn, Jung-moo;Ryu, Jae-cheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.2
    • /
    • pp.251-258
    • /
    • 2017
  • Most malware, including Ransomware, is built for the Windows operating system. This is because it is more harmful to target an operating system with a high share. But in recent years, MacOS's operating system share has steadily increased. As people become more and more used, the number of malicious code running on the MacOS operating system is increasing. Ransomware has been known to Korea since 2015, and damage cases are gradually increasing. MacOS is no longer free from Ransomware, as Ransomware for MacOS was discovered in March 2016. In order to cope with future Ransomware, this paper used Ransomware's modified file extension to detect Ransomware. We have studied how to detect and block Ransomware processes by distinguishing between extensions changed by the user and extensions changed by the Ransomware process.

Research on Malicious code hidden website detection method through WhiteList-based Malicious code Behavior Analysis (WhiteList 기반의 악성코드 행위분석을 통한 악성코드 은닉 웹사이트 탐지 방안 연구)

  • Ha, Jung-Woo;Kim, Huy-Kang;Lim, Jong-In
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.4
    • /
    • pp.61-75
    • /
    • 2011
  • Recently, there is significant increasing of massive attacks, which try to infect PCs that visit websites containing pre-implanted malicious code. When visiting the websites, these hidden malicious codes can gain monetary profit or can send various cyber attacks such as BOTNET for DDoS attacks, personal information theft and, etc. Also, this kind of malicious activities is continuously increasing, and their evasion techniques become professional and intellectual. So far, the current signature-based detection to detect websites, which contain malicious codes has a limitation to prevent internet users from being exposed to malicious codes. Since, it is impossible to detect with only blacklist when an attacker changes the string in the malicious codes proactively. In this paper, we propose a novel approach that can detect unknown malicious code, which is not well detected by a signature-based detection. Our method can detect new malicious codes even though the codes' signatures are not in the pattern database of Anti-Virus program. Moreover, our method can overcome various obfuscation techniques such as the frequent change of the included redirection URL in the malicious codes. Finally, we confirm that our proposed system shows better detection performance rather than MC-Finder, which adopts pattern matching, Google's crawling based malware site detection, and McAfee.

An Intelligent Intrusion Detection Model Based on Support Vector Machines and the Classification Threshold Optimization for Considering the Asymmetric Error Cost (비대칭 오류비용을 고려한 분류기준값 최적화와 SVM에 기반한 지능형 침입탐지모형)

  • Lee, Hyeon-Uk;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.157-173
    • /
    • 2011
  • As the Internet use explodes recently, the malicious attacks and hacking for a system connected to network occur frequently. This means the fatal damage can be caused by these intrusions in the government agency, public office, and company operating various systems. For such reasons, there are growing interests and demand about the intrusion detection systems (IDS)-the security systems for detecting, identifying and responding to unauthorized or abnormal activities appropriately. The intrusion detection models that have been applied in conventional IDS are generally designed by modeling the experts' implicit knowledge on the network intrusions or the hackers' abnormal behaviors. These kinds of intrusion detection models perform well under the normal situations. However, they show poor performance when they meet a new or unknown pattern of the network attacks. For this reason, several recent studies try to adopt various artificial intelligence techniques, which can proactively respond to the unknown threats. Especially, artificial neural networks (ANNs) have popularly been applied in the prior studies because of its superior prediction accuracy. However, ANNs have some intrinsic limitations such as the risk of overfitting, the requirement of the large sample size, and the lack of understanding the prediction process (i.e. black box theory). As a result, the most recent studies on IDS have started to adopt support vector machine (SVM), the classification technique that is more stable and powerful compared to ANNs. SVM is known as a relatively high predictive power and generalization capability. Under this background, this study proposes a novel intelligent intrusion detection model that uses SVM as the classification model in order to improve the predictive ability of IDS. Also, our model is designed to consider the asymmetric error cost by optimizing the classification threshold. Generally, there are two common forms of errors in intrusion detection. The first error type is the False-Positive Error (FPE). In the case of FPE, the wrong judgment on it may result in the unnecessary fixation. The second error type is the False-Negative Error (FNE) that mainly misjudges the malware of the program as normal. Compared to FPE, FNE is more fatal. Thus, when considering total cost of misclassification in IDS, it is more reasonable to assign heavier weights on FNE rather than FPE. Therefore, we designed our proposed intrusion detection model to optimize the classification threshold in order to minimize the total misclassification cost. In this case, conventional SVM cannot be applied because it is designed to generate discrete output (i.e. a class). To resolve this problem, we used the revised SVM technique proposed by Platt(2000), which is able to generate the probability estimate. To validate the practical applicability of our model, we applied it to the real-world dataset for network intrusion detection. The experimental dataset was collected from the IDS sensor of an official institution in Korea from January to June 2010. We collected 15,000 log data in total, and selected 1,000 samples from them by using random sampling method. In addition, the SVM model was compared with the logistic regression (LOGIT), decision trees (DT), and ANN to confirm the superiority of the proposed model. LOGIT and DT was experimented using PASW Statistics v18.0, and ANN was experimented using Neuroshell 4.0. For SVM, LIBSVM v2.90-a freeware for training SVM classifier-was used. Empirical results showed that our proposed model based on SVM outperformed all the other comparative models in detecting network intrusions from the accuracy perspective. They also showed that our model reduced the total misclassification cost compared to the ANN-based intrusion detection model. As a result, it is expected that the intrusion detection model proposed in this paper would not only enhance the performance of IDS, but also lead to better management of FNE.

Study to detect and block leakage of personal information : Android-platform environment (개인정보 유출 탐지 및 차단에 관한 연구 : 안드로이드 플랫폼 환경)

  • Choi, Youngseok;Kim, Sunghoon;Lee, Dong Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.4
    • /
    • pp.757-766
    • /
    • 2013
  • The Malicious code that targets Android is growing dramatically as the number of Android users are increasing. Most of the malicious code have an intention of leaking personal information. Recently in Korea, a malicious code 'chest' has appeared and generated monetary damages by using malicious code to leak personal information and try to make small purchases. A variety of techniques to detect personal information leaks have been proposed on Android platform. However, the existing techniques are hard to apply to the user's smart-phone due to the characteristics of Android security model. This paper proposed a technique that detects and blocks file approaches and internet connections that are not allowed access to personal information by using the system call hooking in the kernel and white-list based approach policy. In addition, this paper proved the possibility of a real application on smart-phone through the implementation.

A Study on Hacking E-Mail Detection using Indicators of Compromise (침해지표를 활용한 해킹 이메일 탐지에 관한 연구)

  • Lee, Hoo-Ki
    • Convergence Security Journal
    • /
    • v.20 no.3
    • /
    • pp.21-28
    • /
    • 2020
  • In recent years, hacking and malware techniques have evolved and become sophisticated and complex, and numerous cyber-attacks are constantly occurring in various fields. Among them, the most widely used route for compromise incidents such as information leakage and system destruction was found to be E-Mails. In particular, it is still difficult to detect and identify E-Mail APT attacks that employ zero-day vulnerabilities and social engineering hacking techniques by detecting signatures and conducting dynamic analysis only. Thus, there has been an increased demand for indicators of compromise (IOC) to identify the causes of malicious activities and quickly respond to similar compromise incidents by sharing the information. In this study, we propose a method of extracting various forensic artifacts required for detecting and investigating Hacking E-Mails, which account for large portion of damages in security incidents. To achieve this, we employed a digital forensic indicator method that was previously utilized to collect information of client-side incidents.

Intelligent & Predictive Security Deployment in IOT Environments

  • Abdul ghani, ansari;Irfana, Memon;Fayyaz, Ahmed;Majid Hussain, Memon;Kelash, Kanwar;fareed, Jokhio
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.185-196
    • /
    • 2022
  • The Internet of Things (IoT) has become more and more widespread in recent years, thus attackers are placing greater emphasis on IoT environments. The IoT connects a large number of smart devices via wired and wireless networks that incorporate sensors or actuators in order to produce and share meaningful information. Attackers employed IoT devices as bots to assault the target server; however, because of their resource limitations, these devices are easily infected with IoT malware. The Distributed Denial of Service (DDoS) is one of the many security problems that might arise in an IoT context. DDOS attempt involves flooding a target server with irrelevant requests in an effort to disrupt it fully or partially. This worst practice blocks the legitimate user requests from being processed. We explored an intelligent intrusion detection system (IIDS) using a particular sort of machine learning, such as Artificial Neural Networks, (ANN) in order to handle and mitigate this type of cyber-attacks. In this research paper Feed-Forward Neural Network (FNN) is tested for detecting the DDOS attacks using a modified version of the KDD Cup 99 dataset. The aim of this paper is to determine the performance of the most effective and efficient Back-propagation algorithms among several algorithms and check the potential capability of ANN- based network model as a classifier to counteract the cyber-attacks in IoT environments. We have found that except Gradient Descent with Momentum Algorithm, the success rate obtained by the other three optimized and effective Back- Propagation algorithms is above 99.00%. The experimental findings showed that the accuracy rate of the proposed method using ANN is satisfactory.

A Study on Effective Adversarial Attack Creation for Robustness Improvement of AI Models (AI 모델의 Robustness 향상을 위한 효율적인 Adversarial Attack 생성 방안 연구)

  • Si-on Jeong;Tae-hyun Han;Seung-bum Lim;Tae-jin Lee
    • Journal of Internet Computing and Services
    • /
    • v.24 no.4
    • /
    • pp.25-36
    • /
    • 2023
  • Today, as AI (Artificial Intelligence) technology is introduced in various fields, including security, the development of technology is accelerating. However, with the development of AI technology, attack techniques that cleverly bypass malicious behavior detection are also developing. In the classification process of AI models, an Adversarial attack has emerged that induces misclassification and a decrease in reliability through fine adjustment of input values. The attacks that will appear in the future are not new attacks created by an attacker but rather a method of avoiding the detection system by slightly modifying existing attacks, such as Adversarial attacks. Developing a robust model that can respond to these malware variants is necessary. In this paper, we propose two methods of generating Adversarial attacks as efficient Adversarial attack generation techniques for improving Robustness in AI models. The proposed technique is the XAI-based attack technique using the XAI technique and the Reference based attack through the model's decision boundary search. After that, a classification model was constructed through a malicious code dataset to compare performance with the PGD attack, one of the existing Adversarial attacks. In terms of generation speed, XAI-based attack, and reference-based attack take 0.35 seconds and 0.47 seconds, respectively, compared to the existing PGD attack, which takes 20 minutes, showing a very high speed, especially in the case of reference-based attack, 97.7%, which is higher than the existing PGD attack's generation rate of 75.5%. Therefore, the proposed technique enables more efficient Adversarial attacks and is expected to contribute to research to build a robust AI model in the future.

A Bloom Filter Application of Network Processor for High-Speed Filtering Buffer-Overflow Worm (버퍼 오버플로우 웜 고속 필터링을 위한 네트워크 프로세서의 Bloom Filter 활용)

  • Kim Ik-Kyun;Oh Jin-Tae;Jang Jong-Soo;Sohn Sung-Won;Han Ki-Jun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.7 s.349
    • /
    • pp.93-103
    • /
    • 2006
  • Network solutions for protecting against worm attacks that complement partial end system patch deployment is a pressing problem. In the content-based worm filtering, the challenges focus on the detection accuracy and its performance enhancement problem. We present a worm filter architecture using the bloom filter for deployment at high-speed transit points on the Internet, including firewalls and gateways. Content-based packet filtering at multi-gigabit line rates, in general, is a challenging problem due to the signature explosion problem that curtails performance. We show that for worm malware, in particular, buffer overflow worms which comprise a large segment of recent outbreaks, scalable -- accurate, cut-through, and extensible -- filtering performance is feasible. We demonstrate the efficacy of the design by implementing it on an Intel IXP network processor platform with gigabit interfaces. We benchmark the worm filter network appliance on a suite of current/past worms, showing multi-gigabit line speed filtering prowess with minimal footprint on end-to-end network performance.