• Title/Summary/Keyword: Malodorous gases

Search Result 15, Processing Time 0.022 seconds

Removal of Malodorous Gases from Swine Manure by a Polyurethane Biofilter Inoculated with Heterotrophic and Autotrophic Bacteria. (종속영양세균과 독립영양세균을 고정화한 Polyurethane Biofilter의 돈분뇨 악취제거)

  • 이연옥;조춘구;류희욱;조경숙
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.1
    • /
    • pp.91-97
    • /
    • 2002
  • Removal of malodorous gases from swine manure by a polyurethane biofilter inoculated with heterotrophic and autotrophic bacteria was investigated. Ammonia, hydrogen sulfide and other gases could be efficiently treated at 3~3.6 second of empty bed retention time by the polyurethane biofilter. In the range of SV $200~l,200h^{-1}$ , the average removal efficiency of odor was about 89% when the odor unit of inlet gas was below 4100. Odor elimination capacity of the polyurethane biofilter was$ 1.8$\times$10^{5}$ $~5.0$\times$10^{7}$OUㆍm$^{-3}$$h^{-1}$ that were 84~90% of the inlet load. The critical loads of $NH_3$ and $H_2$S, which mean 97% removal with respect to the inlet loads, were 31 and $27 g.m^{-3}$$h^{-1}$ , respectively. The maximum elimination capacities of $NH_3$ and $H_2$S were 56 and $157 gㆍm^{-3}$ ㆍh$^{-1}$ , respectively. Although the removability for$ NH_3$ and $H_2$S was not influenced by $H_2$S$NH_3$ ratio (ppmv/ppmv), the $H_2$S removability was inhibited by high $H_2$S concentration more than 80 ppmv.

Isolation and Identification of a Lactic Acid Bacterial Strain KJ-108 and Its Capability for Deodorizing Malodorous Gases Under Anaerobic Culture Conditions

  • KIM, JEONG-DONG;JUNG-HOON YOON;YONG-HA PARK;DAE-WEON LEE;KYOU-SEUNG LEE;CHANG-HYUN CHOI;WON-YEOP PARK;KOOK-HEE KANG
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.2
    • /
    • pp.207-216
    • /
    • 2003
  • A number of different sources, such as composts, leachates, and pig feces samples, were collected from different pig farms in Korea, and several microorganisms were screened for their ability to deodorize the malodorous gases. Consequently, a novel malodorous gases-deodorizing bacterial strain, KJ-108. was isolated, because it was highly abundant in nitrate-supplemented minimal medium ($MM-NO_3^-$) under anaerobic culture conditions. Airtight crimp-sealed serum bottles containing $MM-NO_3^-$ , medium were inoculated with KJ-108. Nitrate concentration was decreased rapidly after 20 h of incubation, and incubation was carried out until nitrite production reached almost zero. Taxonomic identification, including 16S rDNA base sequencing and phylogenetic analysis, indicated that the isolate had $100\%$ homology in its 165 rDNA base sequence with Lactobacillus pentosus. Among the volatile fatty acids, acetic acid contained in large amounts in fresh piggery slurry was decreased by about $40\%$ after 50 h incubation with strain KJ-108. n-Butyric acid, n-valeric acid, and isovaleric acid were gradually decreased, and isobutyric acid and capronic acid were dramatically eliminated at theinitial period with the treatment. Moreover, NH, removal efficiency reached a maximum of $98.5\%$ after 50 h of incubation, but the concentration of $H_2S$ was not changed.

Preparation and Characterization of Carbonized Material from Al-Fe-Mg-Si Nanocomposites Impregnated Biomass

  • Kim, Jin Woo;Lee, Chul Jae
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.129-136
    • /
    • 2018
  • Our present study, we impregnated Al-Fe-Mg-Si (NFM) nanocomposites having various concentrations 0, 1000, 3000, and 5000 mg/L in biomass in order to make carbonized biomass. We characterized the properties of the impregnated samples through thermogravimetric/differential thermal analysis (TG-DTA), pore distribution, scanning electron microscopy (SEM). The best results were observed for a NFM nanocomposites concentration of 5000 mg/L. After the first heat treatment, carbonization, and activation processes, the fixed carbon ratio and iodine adsorptivity were increased by 21.89% and 368 mg/g, 23.98% and 475 mg/g, 26.40% and 238 mg/g, respectively. The remove rate of malodorous and VOCs were that the sample shows good removal capabilities. From above results, our sample could be used for the removal of noxious and malodorous gases and for the purification of wastewater.

Removal of Malodorous Gases Emitted from a Wastewater Pumping Stations by Biological Methods (생물학적 방법에 의한 하수 중계펌프장의 악취제거)

  • 류희욱
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.3
    • /
    • pp.265-270
    • /
    • 2004
  • To select a promising technologies for removal of odorous gases emitted from a wastewater pump station, four methods such as activated carbon (A/C) adsorption, chemical absorption (acid and alkali scrubber), and two biofilters (polyurethane (PU) and worm cast) were investigated. The average odor removal efficiencies in the PU biofilter and A/C column was over 98%, but in a worm cast biofilter and chemical absorption were below 60-80%. The removal efficiency of PU biofilter was very stable (about 98-99%) in the range of retention times of 4-36s, and a maximum elimination capacity was $1.6${\times}$10^{ 7}$ $OUm^{-3}$$h^{-1}$ Deodorization costs for an activated carbon adsorption and a biofiltration method were investigated. With increasing odor intensity, the operating cost of the A/C column increased linearly, but the operating cost of the biofilteration increased slightly. The capital cost in a biofilter is about two times higher than that in an A/C column, but the operating cost is very lower than that of in A/C column. In conclusion, the biofiltration was evaluated one of the most promising technologies to control odor in a wastewater pump station.

Application of biofilter for removing malodomus gas generated from compost factory (퇴비화 '공장에서 발생되는악취'를 제거하기 위한 Biofilter의 적용)

  • Kim, Chang-Il;Lee, Jae-Ho;Kim, Dae-Seung;Nam, Sang-Il;Nam, Yi
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.3
    • /
    • pp.45-56
    • /
    • 1999
  • A biofilter was established to remove the ammonia, which is representative nitrogen-contained malodorous gas. in a compost factory. Removal efficiency of ammonia and hydrogen sulfide also was investigated. A quantity of malodor gas produced in a compost factory was affected greatly by the weather. compost states and working condition of a fertilizing mixer, and the produced gas concentrations doubled by above various parameters. By operating a water scrubbing system for removing water-soluble malodorous gases effectively. we could improve the removal efficiency over three times. We investigated long-term stability of biofilter under continuous gas flow(SV=500h-1) for 100 days. The results showed 30 days of microbial retention time. After the days, deodorization efficiency of biofilter was kept steady state. and the removal efficiency was kept over 95% for ammonia and 97% for hydrogen so]fide. respectively. The electric consumption of the biofilter, which could treat malodorous gas of 100$\textrm{m}^3$/min, applied in the compost factory was evaluated about 80u0day and water consumption was 80~100$\ell$/day. These results concluded that the biofilter is a excellent deodorization technology as well as cost-effective for removing malodorous gas produced in a compost factory.

  • PDF

Removal of Alkali Odors using Impregnated ACFs (첨착 ACF를 이용한 염기성 악취물질의 제거)

  • 김기환;김덕기;최봉각;신창섭
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.1
    • /
    • pp.92-97
    • /
    • 1998
  • Malodorous gases give discomfort and harm to laborers and residential neighborhoods and therefore, the removing odor materials emitted from plants and industrial facilities is important subject. The main ingredients of alkali odor are $NH_3$ and $CE_3SH$. The adsorption characteristics of odors were studied using four different activated carbon fibers(ACF) and active carbon(AC). Alkali odor was removed by using ACF impregnated with $H_3PO_4$ and $H_2SO_4$ and treated with $HNO_3$ and NaOH. The experimental result showed that ACF has a higher removal efficiency than AC. The adsorption capacity was increased with the impregnation and surface treatment, and $H_2SO_4$ was the best impregnant for the removal of alkali odor.

  • PDF

Application case of odor management applied direct olfactory method in Iksan (익산지역에서 직접관능법에 의한 악취관리 사례 연구)

  • Kim, Hwa-Ok;Park, Hui-Geun;Shin, Dae-Yewn;Kang, Gong-Unn
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.2
    • /
    • pp.17-30
    • /
    • 2009
  • In Iksan city, there have been a lot of complaints caused by offensive odor from residents living near the public environmental infrastructures and the Iksan industrial complex. To solve these problems, it is important to know the present condition of odor pollution level in these areas, the emission characteristics of malodorous gases in temporal and spatial variations in addition to meteorological components, and the facilities of major sources emitting malodorous compounds. The objectives of this study is to make the odor monitoring network for 20 people who lived and worked in areas where the environmental infrastructures and the Iksan industrial complex are located and their neighboring areas for six months from June 1st to October 31st in 2008 in Iksan and to monitor the temporal and regional frequency and characteristics of odor intensity using direct olfactory methods. As a result of odor monitoring, the highest frequency of sensed odor per month and 20 people for six months was found to be 107 in July, followed by 84 in September, 80 in August, 54 in June, 38 in October, respectively. Odor intensity trend showed a regional trend in the decreasing order of Dongsan-dong, Busong-dong, and Palbong-dong. Odor was widely perceived from night through next morning and considered as the sense of excreta, chemicals, sewage, compost, waste, etc. When high odor intensity was sensed, there were constant meteorological characteristics: relative humidity was 80~90%, wind speed was less than 0.5~1 m/sec, and main wind directions were from the east, the southeast, and the south.

Analysis of Changing Pattern of Noxious Gas Levels with Malodorous Substance Concentrations in Individual Stage of Pig Pens for 24 hrs to Improve Piggery Environment (돈사환경 개선을 위한 생육단계별 돈사내 악취물질 농도 및 유해가스의 1일 변화추세 분석)

  • You, Won-Gyun;Kim, Cho-Long;Lee, Myung-Gyu;Kim, Dong-Kyun
    • Journal of Animal Environmental Science
    • /
    • v.18 no.1
    • /
    • pp.25-34
    • /
    • 2012
  • Noxious gases with malodorous substance concentrations in each stages of pig buildings were determined at a typical 400sow-scale farm to improve piggery environment. Using IAQ-300 and pDR-1000AN, continuous records for the concentration of $NH_3$, CO, $CO_2$, $NO_2$, $SO_2$, $H_2S$, $O_2$, and along with temperature, humidity, dust concentrates from individual pig pens were collected to analyze every 6 hours' condition of indoor environment for 24 hours' period. In most pig houses, the air quality at noon was good, while at night (00:00~06:00), air composition became noxious in all buildings. The order of buildings' air quality for 24 hrs was pregnant > farrowing > nursery > growing > finishing. The cause of air quality differences was presumed to be the differences of stocking density, defecating amount and the length of exposure time of slurry in indoors. In conclusion, well-designed building structure, proper control of stocking density, quick removal of excreta from pig pens and continuous ventilation are prerequisites to improve pig housing environment.