2008년도 SecruityFocus 자료에 따르면 마이크로소프트사의 인터넷 익스플로러를 통한 클라이언트 측 공격(client-side attack)이 50%이상 증가하였다. 본 논문에서는 가상머신 환경에서 능동적으로 웹 페이지를 방문하여 행위 기반(즉, 상태변경 기반)으로 악성 URL을 분석하여 탐지하고, 블랙리스트 기반으로 악성 URL을 필터링하는 시스템을 구현하였다. 이를 위해, 우선 크롤링 시스템을 구축하여 대상 URL을 효율적으로 수집하였다. 특정 서버에서 구동되는 악성 URL 탐지 시스템은, 수집한 웹페이지를 직접 방문하여 머신의 상태 변경을 관찰 분석하고 악성 여부를 판단한 후, 악성 URL에 대한 블랙리스트를 생성 관리한다. 웹 클라이언트 머신에서 구동되는 악성 URL 필터링 시스템은 블랙리스트 기반으로 악성 URL을 필터링한다. 또한, URL의 분석 시에 메시지 박스를 자동으로 처리함으로써, 성능을 향상시켰다. 실험 결과, 게임 사이트가 다른 사이트에 비해 악성비율이 약 3배 많았으며, 파일생성 및 레지스트리 키 변경 공격이 많음을 확인할 수 있었다.
최근 인터넷의 발전과 동시에 인터넷을 이용한 악성코드 유포는 가장 심각한 사이버 위협 중 하나이며, 탐지 우회 기법이 적용된 악성코드 유포 기술 또한 발전하고 있어, 이를 탐지하고 분석하는 연구가 활발하게 이루어지고 있다. 하지만 기존의 악성코드 유포 웹페이지 탐지 시스템은 시그니처 기반이어서 난독화된 악성 자바스크립트는 탐지가 거의 불가능하며, 탐지 패턴을 지속적으로 업데이트해야 하는 한계가 있다. 이러한 한계점을 극복하기 위해 지능화된 악성코드 유포 웹사이트를 효과적으로 분석 및 탐지할 수 있는 리얼 브라우저를 이용한 지능형 악성코드 유포 웹페이지 탐지 시스템을 제안하고자 한다.
Hwang, Young Sup;Kwon, Jin Baek;Moon, Jae Chan;Cho, Seong Je
Journal of Information Processing Systems
/
제9권3호
/
pp.395-404
/
2013
In order to classify a web page as being benign or malicious, we designed 14 basic and 16 extended features. The basic features that we implemented were selected to represent the essential characteristics of a web page. The system heuristically combines two basic features into one extended feature in order to effectively distinguish benign and malicious pages. The support vector machine can be trained to successfully classify pages by using these features. Because more and more malicious web pages are appearing, and they change so rapidly, classifiers that are trained by old data may misclassify some new pages. To overcome this problem, we selected an adaptive support vector machine (aSVM) as a classifier. The aSVM can learn training data and can quickly learn additional training data based on the support vectors it obtained during its previous learning session. Experimental results verified that the aSVM can classify malicious web pages adaptively.
최근의 웹은 구현 방법과 이용 패턴이 변화되면서 서로 연결되고 융합되는 형태로 변화하였다. 서비스가 진화되고 사용자 경험이 향상되었으나 다양한 출처의 검증되지 않은 웹자원들이 서로 결합되어 보안 위협이 가중되었다. 이에 웹 확장의 역기능을 억제하고 안전한 웹서비스를 제공하기 위해 확장된 대상에 대한 안전성 진단이 필요하다. 본 논문에서는 웹사이트의 안전한 운영을 위해 안전진단을 외부 링크까지 확장하여, 진단 대상을 선별하고 지속적으로 진단하여 악성페이지를 탐지하고 웹사이트의 안전성을 확보하기 위한 스케줄링 방안을 제안한다. 진단 대상의 접속 인기도, 악성사이트 의심도, 검사 노후도 등의 특징을 추출하고 이를 통해 진단 순서를 도출하여 순서에 따라 웹페이지를 수집하여 진단한다. 실험을 통해 순차적으로 반복 진단하는 것보다 순위에 따라 진단 주기를 조정하는 것이 중요도에 따라 악성페이지 탐지에 효과적임을 확인하였다.
웹 페이지에서 다양한 서비스를 제공하면서 악성코드가 웹 페이지를 통해 배포되는 것도 늘어났다. 악성코드는 개인정보 유출, 시스템의 성능저하, 시스템의 좀비 피씨화 등의 피해를 입힌다. 이런 피해를 막으려면 악성코드가 있는 웹 페이지의 접근을 막아야 한다. 그런데 웹 페이지에 있는 악성코드는 난독화나 변형기법으로 위장하고 있어 기존 안티바이러스 소프트웨어가 사용하는 시그니처 방식의 접근법으로 찾아내기 어렵다. 이를 해결하기 위하여, 웹 페이지를 분석하여 악성 웹 페이지와 양성 웹 페이지를 구별하기 위한 특징을 추출하고, 기계 학습법으로 널리 사용되는 SVM을 통하여 악성 웹 페이지를 분류하는 방법을 제안한다. 제안하는 방법이 우수함을 실험을 통하여 보인다. 제안한 방법으로 악성 웹 페이지를 정확히 분류하면 웹 페이지를 통한악성코드의 배포를 막는데 이바지할 것이다.
Drive-by download와 같은 클라이언트 측 공격은, 악의적인 서버와 상호작용하거나 악의적인 데이터를 처리하는 클라이언트 애플리케이션의 취약점을 대상으로 이루어진다. 전형적인 공격은 특정 브라우저 취약점을 악용하는 악성 웹 페이지와 관련된 웰 기반 공격으로, 클라이언트 시스템에 멀웨어를 실행하거나 클라이언트의 제어를 악의적인 서버에게 완전히 넘겨주기도 한다. 이러한 공격을 방어하기 위해, 본 논문에서는 Capture-HPC를 이용하여 가상 머신에서 실행기반으로 악성 웹 페이지를 탐지하는 고 상호작용(high interaction) 클라이언트 허니팟을 구축하였다. 이 실행기반 탐지 시스템을 이용하여 악성 웰 페이지를 탐지하고 분류하였다. 또한 가상머신의 이미지 개수 및 한 가상머신에서 동시 수행하는 브라우저 수에 따른 시스템 성능을 분석하였다. 실험 결과, 가상머신의 이미지 수는 하나이고 동시 수행하는 브라우저의 수가 50개일 때 시스템이 적은 리버팅 오버헤드를 유발하여 더 나은 성능을 보였다.
최근 웹페이지를 통해 악성코드를 유포하는 공격 방법이 이용되면서, 인터넷을 이용하는 사용자들이 웹페이지에 접속하는 것만으로 악성코드에 감염되는 위험에 노출되어 있다. 특히 웹페이지를 통한 악성코드 유포 방법은 사용자가 인지하지 못하는 사이 악성코드를 다운로드하고 실행하게 된다. 본 논문에서는 기존의 분석서버를 이용한 탐지 방법의 한계점을 보완하기 위해, 사용자 영역에서의 실시간 행위 분석을 방법을 사용하여 정상적인 실행 흐름을 벗어난 비정상 다운로드 파일의 실행을 탐지하고 차단하는 시스템을 제안한다.
Despite the convenience brought by the advances in web and Internet technology, users are increasingly being exposed to the danger of various types of cyber attacks. In particular, recent studies have shown that today's cyber attacks usually occur on the web via malware distribution and the stealing of personal information. A drive-by download is a kind of web-based attack for malware distribution. Researchers have proposed various methods for detecting a drive-by download attack effectively. However, existing methods have limitations against recent evasion techniques, including JavaScript obfuscation, hiding, and dynamic code evaluation. In this paper, we propose an emulation-based malicious webpage detection method. Based on our study on the limitations of the existing methods and the state-of-the-art evasion techniques, we will introduce four features that can detect malware distribution networks and we applied them to the proposed method. Our performance evaluation using a URL scan engine provided by VirusTotal shows that the proposed method detects malicious webpages more precisely than existing solutions.
웹쉘은 해커가 원격으로 웹 서버에 명령을 내릴 수 있도록 작성한 웹 스크립트 파일이다. 해커는 웹쉘을 이용하여 보안 시스템을 우회, 시스템에 접근하여 파일 수정, 복사, 삭제 등의 시스템 제어를 할 수 있고 웹 소스코드에 악성코드를 설치해 사용자들의 PC를 공격하거나 연결된 데이터베이스의 정보를 유출하는 등 큰 피해를 입힐 수 있다. 웹쉘 공격의 유형은 여러 가지가 있지만 그중 대표적으로 사용되는 PHP, JSP 기반 웹 서버에 대한 공격에 대해 연구하고 이런 유형의 웹쉘 공격에 대한 대응 방법인 웹페이지 관리차원에서의 방법과 개발과정에서의 방법, 그 외 몇 가지 방법을 제안하였다. 이런 대응 방법들을 활용한다면 웹쉘 공격에 의한 피해를 효과적으로 차단할 수 있다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권1호
/
pp.421-433
/
2015
Recently, there have been fast-growing social network services based on the Internet environment and web technology development, the prevalence of smartphones, etc. Social networks also allow the users to convey the information and news so that they have a great influence on the public opinion formed by social interaction among users as well as the spread of information. On the other hand, these social networks also serve as perfect environments for rampant malware. Malware is rapidly being spread because relationships are formed on trust among the users. In this paper, an effective patch strategy is proposed to deal with malicious worms based on social networks. A graph is formed to analyze the structure of a social network, and subgroups are formed in the graph for the distributed patch strategy. The weighted directions and activities between the nodes are taken into account to select reliable key nodes from the generated subgroups, and the Incremental PageRanking algorithm reflecting dynamic social network features (addition/deletion of users and links) is used for deriving the high influential key nodes. With the patch based on the derived key nodes, the proposed method can prevent worms from spreading over social networks.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.