최근에는 인공지능을 활용하여 악성 URL을 탐지하는 다양한 연구가 진행되고 있으며, 대부분의 연구 결과에서 높은 탐지 성능을 보였다. 그러나 고전 머신러닝을 활용하는 경우 feature를 분석하고 선별해야 하는 추가 비용이 발생하며, 데이터 분석가의 역량에 따라 탐지 성능이 결정되는 이슈가 있다. 본 논문에서는 이러한 이슈를 해결하기 위해 URL lexical feature를 자동으로 추출하는 딥러닝 모델의 일부가 고전 머신러닝 모델에 결합된 형태인 DL-ML Fusion Hybrid 모델을 제안한다. 제안한 모델로 직접 수집한 총 6만 개의 악성과 정상 URL을 학습한 결과 탐지 성능이 최대 23.98%p 향상되었을 뿐만 아니라, 자동화된 feature engineering을 통해 효율적인 기계학습이 가능하였다.
최근 사이버 공격은 지능적이고 고도화된 악성코드를 활용한 해킹 기법을 활용하여 재택근무 및 원격의료, 자동산업설비를 공격하고 있어서 피해 규모가 커지고 있다. 안티바이러스와 같은 전통적인 정보보호체계는 시그니처 패턴 기반의 알려진 악성 URL을 탐지하는 방식이어서 알려지지 않은 악성 URL을 탐지할 수 없다. 그리고 종래의 정적 분석 기반의 악성 URL 분석 방식은 동적 로드와 암호화 공격에 취약하다. 본 연구에서는 악성 URL 데이터를 동적으로 학습하여 효율적으로 악성 URL 탐지하는 기법을 제안한다. 제안한 탐지 기법에서는 머신러닝 기반의 특징 선택 알고리즘을 사용해 악성 코드를 분류했고, 가중 유클리드 거리(Weighted Euclidean Distance, WED)를 활용하여 사전처리를 진행한 후 난독화 요소를 제거하여 정확도를 개선한다. 실험 결과에 따르면 본 연구에서 제안한 머신러닝 기반 악성 URL 탐지 기법은 종래의 방법 대비 2.82% 향상된 89.17%의 정확도를 보인다.
최근 사이버 공격은 지능적이고 지속적인 피싱사이트와 악성코드를 활용한 해킹 기법을 활용하는 사회공학적 공격이 증가하고 있다. 개인 보안이 중요해지는 만큼 웹 어플리케이션을 이용해 악성 URL 여부를 판별하는 방법과 솔루션이 요구되고 있다. 본 논문은 악성 URL를 탐지하는 정확도가 높은 기법들을 비교하여 각각의 특징과 한계를 알아가고자 한다. 웹 평판 DB 등 기반 URL 탐지 사이트와 특징을 활용한 분류알고리즘 모델과 비교하여 효율적인 URL 이상탐지 기법을 제안하고자 한다.
악성 URL의 전송을 통한 악성코드 전파 및 불법적 정보 수집은 정보보안 분야의 가장 큰 위협 중의 하나이다. 특히, 최근 스마트폰의 보급으로 인하여 사용자들이 악성 URL에 노출될 확률이 더욱 높아지고 있다. 또한, 악성 URL을 노출 시키는 방법 역시 다양해 지고 있어서 이를 탐지하는 것이 점점 어려워지고 있다. 본 논문은 악성 URL에 대한 사용자의 경험에 대한 설문을 진행한 후, 이를 고려하여 악성 URL을 규칙기반으로 탐지하기 위한 라이브러리 개발 연구를 다루고 있다. 특히, 본 연구에서는 독자적인 규칙을 기반으로 악성 URL을 탐지 하기 위해 Rule-set을 정의하고, Rule-chain을 생성하여 악성 URL 탐지의 확장성을 제시하고 있다. 또한 어떤 애플리케이션에서도 활용이 가능한 라이브러리 형태로의 개발을 통해 다양한 응용프로그램에서 활용할 수 있도록 하였다.
2008년도 SecruityFocus 자료에 따르면 마이크로소프트사의 인터넷 익스플로러를 통한 클라이언트 측 공격(client-side attack)이 50%이상 증가하였다. 본 논문에서는 가상머신 환경에서 능동적으로 웹 페이지를 방문하여 행위 기반(즉, 상태변경 기반)으로 악성 URL을 분석하여 탐지하고, 블랙리스트 기반으로 악성 URL을 필터링하는 시스템을 구현하였다. 이를 위해, 우선 크롤링 시스템을 구축하여 대상 URL을 효율적으로 수집하였다. 특정 서버에서 구동되는 악성 URL 탐지 시스템은, 수집한 웹페이지를 직접 방문하여 머신의 상태 변경을 관찰 분석하고 악성 여부를 판단한 후, 악성 URL에 대한 블랙리스트를 생성 관리한다. 웹 클라이언트 머신에서 구동되는 악성 URL 필터링 시스템은 블랙리스트 기반으로 악성 URL을 필터링한다. 또한, URL의 분석 시에 메시지 박스를 자동으로 처리함으로써, 성능을 향상시켰다. 실험 결과, 게임 사이트가 다른 사이트에 비해 악성비율이 약 3배 많았으며, 파일생성 및 레지스트리 키 변경 공격이 많음을 확인할 수 있었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권11호
/
pp.5580-5593
/
2019
A malicious Uniform Resource Locator (URL) recognition and detection method based on the combination of Attention mechanism with Convolutional Neural Network and Long Short-Term Memory Network (Attention-Based CNN-LSTM), is proposed. Firstly, the WHOIS check method is used to extract and filter features, including the URL texture information, the URL string statistical information of attributes and the WHOIS information, and the features are subsequently encoded and pre-processed followed by inputting them to the constructed Convolutional Neural Network (CNN) convolution layer to extract local features. Secondly, in accordance with the weights from the Attention mechanism, the generated local features are input into the Long-Short Term Memory (LSTM) model, and subsequently pooled to calculate the global features of the URLs. Finally, the URLs are detected and classified by the SoftMax function using global features. The results demonstrate that compared with the existing methods, the Attention-based CNN-LSTM mechanism has higher accuracy for malicious URL detection.
사물인터넷 등을 통하여 각종 기기들이 인터넷으로 연결되어 있고 이로 인하여 인터넷을 이용한 공격이 발생하고 있다. 그러한 공격 중 악성 URL를 이용하여 사용자에게 잘못된 피싱 사이트로 접속하게 하거나 악성 바이러스를 유포하는 공격들이 있다. 이러한 악성 URL 공격을 탐지하는 방법은 중요한 보안 이슈 중에 하나이다. 최근 딥러닝 기술 중 뉴럴네트워크는 이미지 인식, 음성 인식, 패턴 인식 등에 좋은 성능을 보여주고 있고 이러한 뉴럴네트워크를 이용하여 악성 URL 탐지하는 분야가 연구되고 있다. 본 논문에서는 뉴럴네트워크를 이용한 악성 URL 탐지 성능을 각 파라미터 및 구조에 따라서 성능을 분석하였다. 뉴럴네트워크의 활성화함수, 학습률, 뉴럴네트워크 모델 등 다양한 요소들에 따른 악성 URL 탐지 성능에 어떠한 영향을 미치는 지 분석하였다. 실험 데이터는 Alexa top 1 million과 Whois에서 크롤링하여 데이터를 구축하였고 머신러닝 라이브러리는 텐서플로우를 사용하였다. 실험결과로 층의 개수가 4개이고 학습률이 0.005이고 각 층마다 노드의 개수가 100개 일 때, 97.8%의 accuracy와 92.94%의 f1 score를 갖는 것을 볼 수 있었다.
최근 코로나 19, 정치적 상황 등 사회적 현안을 악용한 스미싱, 해킹메일 공격이 지속되고 있다. 공격의 대부분은 악성 URL 접근을 유도하여 개인정보를 탈취하는 방식을 취하고 있는데, 이를 대비하기 위해 현재 머신러닝, 딥러닝 기술 연구가 활발하게 진행되고 있다. 하지만 기존 연구에서는 데이터 세트의 특징들이 단순하기 때문에 악성으로 판별할 근거가 부족하다고 판단하였다. 본 논문에서는 URL 데이터 분석을 통해 기존 연구에 반영된 URL 어휘적인 특징 이외에도 "URL Days", "URL Words", "URL Abnormal" 3종, 9개 주요특징을 추가 제안하였고, 4개의 머신러닝 알고리즘 적용을 통해 F1-Score, 정확도 지표로 측정하였다. 기존 연구와 비교 분석 시 평균 0.9%가 향상된 결과 값과 F1-Score, 정확도에서 최고 98.5%가 측정됨에 따라 주요특징이 정확도 및 성능 향상에 기여하였다.
Journal of Korea Artificial Intelligence Association
/
제1권2호
/
pp.1-6
/
2023
In this paper, we present a new method for classifying malicious URLs to reduce cases of learning difficulties due to unfamiliar and difficult terms related to information protection. This study plans to extract only visually distinguishable features within the URL structure and compare them through map learning algorithms, and to compare the contribution values of the best map learning algorithm methods to extract features that have the most impact on classifying malicious URLs. As research data, Kaggle used data that classified 7,046 malicious URLs and 7.046 normal URLs. As a result of the study, among the three supervised learning algorithms used (Decision Tree, Support Vector Machine, and Logistic Regression), the Decision Tree algorithm showed the best performance with 83% accuracy, 83.1% F1-score and 83.6% Recall values. It was confirmed that the contribution value of https is the highest among whether to use https, sub domain, and prefix and suffix, which can be visually distinguished through the feature contribution of Decision Tree. Although it has been difficult to learn unfamiliar and difficult terms so far, this study will be able to provide an intuitive judgment method without explanation of the terms and prove its usefulness in the field of malicious URL detection.
본 논문에서는 테인트드로이드(TaintDroid)를 이용한 스미싱 탐지 기법을 제안한다. 제안하는 시스템은 스마트폰 사용자가 스미싱으로 의심되는 URL이 포함된 문자메시지를 수신 하였을 때 테인트드로이드 서버로 URL을 전송하여 테인트드로이드 서버의 가상디바이스에 해당 애플리케이션을 설치하여 악성행위를 탐지한다. 실제 스마트폰에서 스미싱으로 의심되어 설치하지 못하였던 애플리케이션은 가상 디바이스를 통하여 테스트하고 악성행위를 하는 애플리케이션인지의 여부를 판별한다. 본 논문에서 제안한 테인트드로이드를 이용한 스미싱 탐지 기법은 새로운 형태의 스미싱 문자메시지의 탐지가 가능하며 사용자가 분석결과를 통해 어떤 애플리케이션인지의 확인이 가능하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.