• Title/Summary/Keyword: Malicious Attack

Search Result 424, Processing Time 0.023 seconds

A Study of Detecting Malicious Files using Similarity between Machine Code in Deleted File Slices (삭제된 파일 조각에서 기계어 코드 유사도를 이용한 악의적인 파일 탐지에 대한 연구)

  • Lee, Dong-Ju;Lee, Suk-Bong;Kim, Min-Soo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.6
    • /
    • pp.81-93
    • /
    • 2006
  • A file system is an evidence resource of cyber crime in computer forensics. Therefore the methods of recovering the file system and searching important information have been offered. However, the methods for finding a malicious fie in free blocks or slack spaces have not been suggested. In this paper, we propose an investigation method to find a maliciously executable fragmented file. After estimating if a file is executable with a machine code rate, we conclude it could be malicious by comparing a similarity of instruction sequences. To examine instruction sequences, we also propose a method of profiling malicious files using file and a method of comparing the continued scores. As the results, we could exactly pick out the malicious execution files, such as buffer overflow attack program, at fitting threshold level.

Malicious Code Injection Vulnerability Analysis in the Deflate Algorithm (Deflate 압축 알고리즘에서 악성코드 주입 취약점 분석)

  • Kim, Jung-hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.869-879
    • /
    • 2022
  • Through this study, we discovered that among three types of compressed data blocks generated through the Deflate algorithm, No-Payload Non-Compressed Block type (NPNCB) which has no literal data can be randomly generated and inserted between normal compressed blocks. In the header of the non-compressed block, there is a data area that exists only for byte alignment, and we called this area as DBA (Disposed Bit Area), where an attacker can hide various malicious codes and data. Finally we found the vulnerability that hides malicious codes or arbitrary data through inserting NPNCBs with infected DBA between normal compressed blocks according to a pre-designed attack scenario. Experiments show that even though contaminated NPNCB blocks were inserted between normal compressed blocks, commercial programs decoded normally contaminated zip file without any warning, and malicious code could be executed by the malicious decoder.

Bayesian Rules Based Optimal Defense Strategies for Clustered WSNs

  • Zhou, Weiwei;Yu, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5819-5840
    • /
    • 2018
  • Considering the topology of hierarchical tree structure, each cluster in WSNs is faced with various attacks launched by malicious nodes, which include network eavesdropping, channel interference and data tampering. The existing intrusion detection algorithm does not take into consideration the resource constraints of cluster heads and sensor nodes. Due to application requirements, sensor nodes in WSNs are deployed with approximately uncorrelated security weights. In our study, a novel and versatile intrusion detection system (IDS) for the optimal defense strategy is primarily introduced. Given the flexibility that wireless communication provides, it is unreasonable to expect malicious nodes will demonstrate a fixed behavior over time. Instead, malicious nodes can dynamically update the attack strategy in response to the IDS in each game stage. Thus, a multi-stage intrusion detection game (MIDG) based on Bayesian rules is proposed. In order to formulate the solution of MIDG, an in-depth analysis on the Bayesian equilibrium is performed iteratively. Depending on the MIDG theoretical analysis, the optimal behaviors of rational attackers and defenders are derived and calculated accurately. The numerical experimental results validate the effectiveness and robustness of the proposed scheme.

Wavelet-Based Semi-Fragile Watermarking with Tamper Detection

  • Lee, Jun-Hyuk;Jung, Hun;Seo, Yeung-Su;Yu, Chun-Gun;Park, Hae-Woo
    • 한국정보컨버전스학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.93-97
    • /
    • 2008
  • In this letter, a novel wavelet-based semi-fragile watermarking scheme is presented which exploiting the time-frequency feature of chaotic map. We also analyze the robustness to mild modification and fragility to malicious attack of our scheme. Its application includes tamper detection, image verification and copyright protection of multimedia content. Simulation results show the scheme can detect and localize malicious attacks with high peak signal-to-noise ratio(PSNR), while tolerating certain degree of JPEG compression and channel additive white Gaussian noise(AWGN)

  • PDF

Analysis and Detection of Malicious Data Hidden in Slack Space on OOXML-based Corrupted MS-Office Digital Files

  • Sangwon Na;Hyung-Woo Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.1
    • /
    • pp.149-156
    • /
    • 2023
  • OOXML-based MS-Office digital files are extensively utilized by businesses and organizations worldwide. However, OOXML-based MS-Office digital files are vulnerable to forgery and corruption attack by including hidden suspicious information, which can lead to activating malware or shell code being hidden in the file. Such malicious code can cause a computer system to malfunction or become infected with ransomware. To prevent such attacks, it is necessary to analyze and detect the corruption of OOXML-based MS-Office files. In this paper, we examine the weaknesses of the existing OOXML-based MS-Office file structure and analyzes how concealment and forgery are performed on MS-Office digital files. As a result, we propose a system to detect hidden data effectively and proactively respond to ransomware attacks exploiting MS-Office security vulnerabilities. Proposed system is designed to provide reliable and efficient detection of hidden data in OOXML-based MS-Office files, which can help organizations protect against potential security threats.

Group Key Management based on (2, 2) Secret Sharing

  • Wuu, Lih-Chyau;Hung, Chi-Hsiang;Kuo, Wen-Chung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.1144-1156
    • /
    • 2014
  • In Internet, IP multicast has been used successfully to provide an efficient, best-effort delivery service for group communication applications. However, applications such as multiparty private conference, distribution of stock market information, pay per view and other subscriber services may require secure multicast to protect integrity and confidentiality of the group traffic, and validate message authenticity. Providing secure multicast for group communication is problematic without a robust group key management. In this paper, we propose a group key management scheme based on the secret sharing technology to require each member by itself to generate the group key when receiving a rekeying message multicast by the group key distributor. The proposed scheme enforces mutual authentication between a member and the group key distributor while executing the rekeying process, and provides forward secrecy and backward secrecy properties, and resists replay attack, impersonating attack, group key disclosing attack and malicious insider attack.

Improving an RFID Mutual Authentication Protocol using One-time Random Number (개선한 일회성 난수를 이용한 RFID 상호인증 프로토콜)

  • Yoon, Eun-Jun;Yoo, Kee-Young
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.2
    • /
    • pp.90-97
    • /
    • 2009
  • In 2008, Kim-Jun proposed a RFID mutual authentication protocol using one-time random number that can withstand malicious attacks by the leakage of important information and resolve the criminal abuse problems. Through the security analysis, they claimed that the proposed protocol can withstand various security attacks including the replay attack. However, this paper demonstrates that Kim-Jun' s RFID authentication protocol still insecure to the replay attack. In addition, this paper also proposes a simply improved RFID mutual authentication protocol using one-time random number which not only provides same computational efficiency, but also withstands the replay attack.

Security Weaknesses in Harn-Lin and Dutta-Barua Protocols for Group Key Establishment

  • Nam, Jung-Hyun;Kim, Moon-Seong;Paik, Ju-Ryon;Won, Dong-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.751-765
    • /
    • 2012
  • Key establishment protocols are fundamental for establishing secure communication channels over public insecure networks. Security must be given the topmost priority in the design of a key establishment protocol. In this work, we provide a security analysis on two recent key establishment protocols: Harn and Lin's group key transfer protocol and Dutta and Barua's group key agreement protocol. Our analysis shows that both the Harn-Lin protocol and the Dutta-Barua protocol have a flaw in their design and can be easily attacked. The attack we mount on the Harn-Lin protocol is a replay attack whereby a malicious user can obtain the long-term secrets of any other users. The Dutta-Barua protocol is vulnerable to an unknown key-share attack. For each of the two protocols, we present how to eliminate their security vulnerabilities. We also improve Dutta and Barua's proof of security to make it valid against unknown key share attacks.

Attack-Resistant Received Signal Strength based Compressive Sensing Wireless Localization

  • Yan, Jun;Yu, Kegen;Cao, Yangqin;Chen, Liang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4418-4437
    • /
    • 2017
  • In this paper a three-phase secure compressive sensing (CS) and received signal strength (RSS) based target localization approach is proposed to mitigate the effect of malicious node attack. RSS measurements are first arranged into a group of subsets where the same measurement can be included in multiple subsets. Intermediate target position estimates are then produced using individual subsets of RSS measurements and the CS technique. From the intermediate position estimates, the residual error vector and residual error square vector are formed. The least median of residual error square is utilized to define a verifier parameter. The selected residual error vector is utilized along with a threshold to determine whether a node or measurement is under attack. The final target positions are estimated by using only the attack-free measurements and the CS technique. Further, theoretical analysis is performed for parameter selection and computational complexity evaluation. Extensive simulation studies are carried out to demonstrate the advantage of the proposed CS-based secure localization approach over the existing algorithms.

Using Genetic Algorithm for Optimal Security Hardening in Risk Flow Attack Graph

  • Dai, Fangfang;Zheng, Kangfeng;Wu, Bin;Luo, Shoushan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1920-1937
    • /
    • 2015
  • Network environment has been under constant threat from both malicious attackers and inherent vulnerabilities of network infrastructure. Existence of such threats calls for exhaustive vulnerability analyzing to guarantee a secure system. However, due to the diversity of security hazards, analysts have to select from massive alternative hardening strategies, which is laborious and time-consuming. In this paper, we develop an approach to seek for possible hardening strategies and prioritize them to help security analysts to handle the optimal ones. In particular, we apply a Risk Flow Attack Graph (RFAG) to represent network situation and attack scenarios, and analyze them to measure network risk. We also employ a multi-objective genetic algorithm to infer the priority of hardening strategies automatically. Finally, we present some numerical results to show the performance of prioritizing strategies by network risk and hardening cost and illustrate the application of optimal hardening strategy set in typical cases. Our novel approach provides a promising new direction for network and vulnerability analysis to take proper precautions to reduce network risk.