• 제목/요약/키워드: Malicious Applications

Search Result 153, Processing Time 0.029 seconds

Cryptanalysis of an 'Efficient-Strong Authentiction Protocol (E-SAP) for Healthcare Applications Using Wireless Medical Sensor Networks'

  • Khan, Muhammad Khurram;Kumari, Saru;Singh, Pitam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.967-979
    • /
    • 2013
  • Now a day, Wireless Sensor Networks (WSNs) are being widely used in different areas one of which is healthcare services. A wireless medical sensor network senses patient's vital physiological signs through medical sensor-nodes deployed on patient's body area; and transmits these signals to devices of registered medical professionals. These sensor-nodes have low computational power and limited storage capacity. Moreover, the wireless nature of technology attracts malicious minds. Thus, proper user authentication is a prime concern before granting access to patient's sensitive and private data. Recently, P. Kumar et al. claimed to propose a strong authentication protocol for healthcare using Wireless Medical Sensor Networks (WMSN). However, we find that P. Kumar et al.'s scheme is flawed with a number of security pitfalls. Information stored inside smart card, if extracted, is enough to deceive a valid user. Adversary can not only access patient's physiological data on behalf of a valid user without knowing actual password, can also send fake/irrelevant information about patient by playing role of medical sensor-node. Besides, adversary can guess a user's password and is able to compute the session key shared between user and medical sensor-nodes. Thus, the scheme looses message confidentiality. Additionally, the scheme fails to resist insider attack and lacks user anonymity.

Present and Future Technologies of Satellite Communication Network Security (위성 통신망 보안 기술 당면 과제 및 향후 발전 방향 분석)

  • Choi, Jihwan;Joo, Changhee
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.3
    • /
    • pp.50-53
    • /
    • 2017
  • Satellite communications are vulnerable to malicious eavesdroppers and interceptors due to wide coverage and broadcasting applications. However, technologies for securing satellite networks have yet to be more articulated beyond high-layer packet encryption. As attempts for jamming and spoofing attacks spread out, it is extremely critical to invest on the development of physical layer security solutions. In this paper, we review current technologies for satellite communication network security both in high and physical layers. We also present recent research results on physical layer security in the fields of information theory and wireless networks. We suggest a future direction for satellite communication security, including a cross-layer approach.

A Study on the Design of the Gateway for a Strong and Safe Mobile Agent System (강하고 안전한 이동 에이전트 시스템을 위한 게이트웨이 설계에 관한 연구)

  • Kim Hyo-Nam
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.3
    • /
    • pp.183-188
    • /
    • 2004
  • In the course of Internet proliferation. many network-related technologies are examined for possible growth and evolution. The use of Internet-based technologies in private networks has further fuelled the demand for network-based applications. The most Promising among the new paradigms is use of mobile agents. It also however, suffers from a major drawback, namely the potential for malicious attacks, abuse of resources pilfering of information, and other security issues. These issues are significantly hampering the acceptance of the mobile-agent paradigm. This paper proposed the design of strong and safe mobile agent gateway that split and merge the agent code with security policy database. This mechanism will promote the security in mobile agent systems and mobile agent itself.

  • PDF

Security Clustering Algorithm Based on Integrated Trust Value for Unmanned Aerial Vehicles Network

  • Zhou, Jingxian;Wang, Zengqi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1773-1795
    • /
    • 2020
  • Unmanned aerial vehicles (UAVs) network are a very vibrant research area nowadays. They have many military and civil applications. Limited bandwidth, the high mobility and secure communication of micro UAVs represent their three main problems. In this paper, we try to address these problems by means of secure clustering, and a security clustering algorithm based on integrated trust value for UAVs network is proposed. First, an improved the k-means++ algorithm is presented to determine the optimal number of clusters by the network bandwidth parameter, which ensures the optimal use of network bandwidth. Second, we considered variables representing the link expiration time to improve node clustering, and used the integrated trust value to rapidly detect malicious nodes and establish a head list. Node clustering reduce impact of high mobility and head list enhance the security of clustering algorithm. Finally, combined the remaining energy ratio, relative mobility, and the relative degrees of the nodes to select the best cluster head. The results of a simulation showed that the proposed clustering algorithm incurred a smaller computational load and higher network security.

The High-Reliable Image Authentication Technique using Histogram Compensation (히스토그램 보정을 이용한 고신뢰성 영상 인증 기법)

  • Kim, Hyo-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.7
    • /
    • pp.1088-1094
    • /
    • 2010
  • Image authentication algorithms have to discriminate forged contents in the various critical fields of military, medical services, digital documents. They must ensure perceptual invisibility and fragility against malicious attacks. It is desirable that watermarking algorithms support sufficient insertion capacity and blind feature. And, high reliable algorithms that can eliminate false-positive and false-negative errors are needed in the watermark extraction process. In this paper, we control coefficients of high frequency band in a DCT domain and compensate brightness histogram for high reliability. As a result, we found that the proposed algorithm guarantee various requirements such as perceptual invisibility with high PSNR values, fragility, high reliability and blind feature. In addition, experiment results show that the proposed algorithm can be used steganographic applications by sufficient capacity of watermark.

Data Firewall: A TPM-based Security Framework for Protecting Data in Thick Client Mobile Environment

  • Park, Woo-Ram;Park, Chan-Ik
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.4
    • /
    • pp.331-337
    • /
    • 2011
  • Recently, Virtual Desktop Infrastructure (VDI) has been widely adopted to ensure secure protection of enterprise data and provide users with a centrally managed execution environment. However, user experiences may be restricted due to the limited functionalities of thin clients in VDI. If thick client devices like laptops are used, then data leakage may be possible due to malicious software installed in thick client mobile devices. In this paper, we present Data Firewall, a security framework to manage and protect security-sensitive data in thick client mobile devices. Data Firewall consists of three components: Virtual Machine (VM) image management, client VM integrity attestation, and key management for Protected Storage. There are two types of execution VMs managed by Data Firewall: Normal VM and Secure VM. In Normal VM, a user can execute any applications installed in the laptop in the same manner as before. A user can access security-sensitive data only in the Secure VM, for which the integrity should be checked prior to access being granted. All the security-sensitive data are stored in the space called Protected Storage for which the access keys are managed by Data Firewall. Key management and exchange between client and server are handled via Trusted Platform Module (TPM) in the framework. We have analyzed the security characteristics and built a prototype to show the performance overhead of the proposed framework.

A Regularity-Based Preprocessing Method for Collaborative Recommender Systems

  • Toledo, Raciel Yera;Mota, Yaile Caballero;Borroto, Milton Garcia
    • Journal of Information Processing Systems
    • /
    • v.9 no.3
    • /
    • pp.435-460
    • /
    • 2013
  • Recommender systems are popular applications that help users to identify items that they could be interested in. A recent research area on recommender systems focuses on detecting several kinds of inconsistencies associated with the user preferences. However, the majority of previous works in this direction just process anomalies that are intentionally introduced by users. In contrast, this paper is centered on finding the way to remove non-malicious anomalies, specifically in collaborative filtering systems. A review of the state-of-the-art in this field shows that no previous work has been carried out for recommendation systems and general data mining scenarios, to exactly perform this preprocessing task. More specifically, in this paper we propose a method that is based on the extraction of knowledge from the dataset in the form of rating regularities (similar to frequent patterns), and their use in order to remove anomalous preferences provided by users. Experiments show that the application of the procedure as a preprocessing step improves the performance of a data-mining task associated with the recommendation and also effectively detects the anomalous preferences.

Feature Selection to Mine Joint Features from High-dimension Space for Android Malware Detection

  • Xu, Yanping;Wu, Chunhua;Zheng, Kangfeng;Niu, Xinxin;Lu, Tianling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4658-4679
    • /
    • 2017
  • Android is now the most popular smartphone platform and remains rapid growth. There are huge number of sensitive privacy information stored in Android devices. Kinds of methods have been proposed to detect Android malicious applications and protect the privacy information. In this work, we focus on extracting the fine-grained features to maximize the information of Android malware detection, and selecting the least joint features to minimize the number of features. Firstly, permissions and APIs, not only from Android permissions and SDK APIs but also from the developer-defined permissions and third-party library APIs, are extracted as features from the decompiled source codes. Secondly, feature selection methods, including information gain (IG), regularization and particle swarm optimization (PSO) algorithms, are used to analyze and utilize the correlation between the features to eliminate the redundant data, reduce the feature dimension and mine the useful joint features. Furthermore, regularization and PSO are integrated to create a new joint feature mining method. Experiment results show that the joint feature mining method can utilize the advantages of regularization and PSO, and ensure good performance and efficiency for Android malware detection.

Threats according to the Type of Software Updates and White-List Construction Scheme for Advanced Security (소프트웨어 업데이트 유형별 위협요소와 안전성 강화를 위한 화이트리스트 구성 방안)

  • Lee, Daesung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1369-1374
    • /
    • 2014
  • In case of APT attacks, the update server is being used as a means of dissemination, the update program is running malicious code or data in applications such as anti-virus signature is vulnerable to manipulation, SW Update threat identification and prevention measures are urgently required. This paper presents a natiional and international SW update structure, update process exploits and response measures to examine, Through the extraction/analysis of a domestic famous SW update log, we are willing to select the necessary component of the normal program update to identify a white list.

Authentication Method for Safe Internet of Things Environments (안전한 사물 인터넷 환경을 위한 인증 방식)

  • Lee, Young-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.1
    • /
    • pp.51-58
    • /
    • 2015
  • Internet of Thing is a collection of various technical components, and the interworking among heterogeneous devices, networks, applications is expected to be accelerated through the openness of IoT platform. For this reason, many technical and administrative security threats will occur in IoT environments. In this paper, authentication methods of recent researches are analyzed for safe IoT services, and new mutual authentication protocol is proposed to provide more secure communication. The proposed protocol prevents an impersonation as malicious gateway or illegal device providing mutual authentication between gateway and IoT device. The performance analysis and evaluation of proposed authentication protocol are performed.