• Title/Summary/Keyword: Maleic Anhydride

Search Result 257, Processing Time 0.025 seconds

Pyran and Pyridine as Building Blocks in Heterocyclic Synthesis (이중고리 합성에 블록제로서 이용된 피란과 피리딘)

  • El-Hashash, Maher.A.;El-Sawy, Abdallah.A.;Eissa, Abdelmonem.M.F.
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.3
    • /
    • pp.308-324
    • /
    • 2009
  • The present work is devoted to study the interaction of $\beta$-aroylacrylic acid derivative (3) with malononitrile in (DMF) in the presence of piperidine and/or ammonium acetate, then using the formed compounds as starting materials for synthesizing fused and isolated heterocyclic systems. It has been established that the $\beta$-aroylacrylic acid (3) reacts with malononitrile in (DMF) in the presence of piperidine as a catalyst with the formation of 4H-pyran derivative (4). By changing the catalyst into ammonium acetate, pyridine derivative (5) has been obtained. Also the N-maleamic acid derivatives (19) and (27) have been synthesized via the interaction of (4) and (5) with maleic anhydride. The purpose of this step is to study the behavior of the formed maleamic acid derivatives – as analogies of $\beta$-aroylacrylic acids – towards different active methylene compounds under Michael addition reaction.

Fabrication of Natural Fiber Composites through Hot Press and Analysis of Interfacial Adhesion (고온 프레스를 이용한 자연섬유 복합재료 제조와 계면 결합 분석)

  • Yi, Jin W.;Hwang, Byung S.;Lee, Jung H.;Nah, Chang W.
    • Journal of Adhesion and Interface
    • /
    • v.7 no.2
    • /
    • pp.26-31
    • /
    • 2006
  • In order to effectively improve interfacial adhesion strength between polypropylene (PP) and jute fiber, we particularly incorporated maleic anhydride grafted PP (MAPP) into the matrix through the environment-friendly process without an additional method of process and had better mechanical performances by providing the alignment into the natural fiber than those of the conventional fabrication technology such as an extrusion or injection molding. We also proposed hot pressing method which applied relatively low shear to the composites and confirmed the chemical bonds among the functional groups of MAPP and jute using FT-IR approach. The concentration of MAPP for maximum tensile strength and modulus was optimized at 3 wt%. Flexural properties had no noticeable tendency to increase with MAPP contents compared to tensile strength, which could probably be explained by the degree in wetting of PP/MAPP matrix.

  • PDF

Studies on Heat Stability of Egg Albumen Gel III. Changes of Heat Stability of Egg Albumen Gel by Chemical Modification (난백겔의 열안정성에 관한 연구 III. 화학변형에 의한 난백겔의 열안정성 변화)

  • 유익종;김창한;한석현;송계원
    • Korean Journal of Poultry Science
    • /
    • v.17 no.3
    • /
    • pp.217-223
    • /
    • 1990
  • This study was undertaken to find out the changes of chemically modified egg albumen grl after heat treatment at $95^{\circ}C$ for 30 minutes or at $120^{\circ}C$ for 30 minutes. Acetylation and succinylation increased the hardness of egg albumen gel, it was rather higher at high heat treatment($120^{\circ}C$, 30min.) than at low heat treatment($95^{\circ}C$, 30min). The cohesiveness of egg albumen gel was improved remarkably by succinylation and maleylation at both low and high heat treatment. The lightness and yellowness of egg albumen gel were decreased by chemical modification. Initial heat denaturation temperature of egg albumen was increased by 11$^{\circ}C$ by acetylation, by $12.5^{\circ}C$ by maleylation and by ,$14.5^{\circ}C$ by succinylation.

  • PDF

Study on the Properties of Polyolefin Elastomer(POE)/Ethylene Vinylacetate(EVA) Film with the Conent of Compatibilizer (POE-g-MAH) (상용화제(POE-g-MAH) 함량에 따른 Polyolefin elastomer/Ethylene vinylacetate 필름의 물성 변화에 대한 연구)

  • Na Young Jang;Eun Hye Kang;Jeong Jin Park;Gyeong Cheol Yu;Jong Hee Kim;Seung Goo Lee
    • Textile Coloration and Finishing
    • /
    • v.35 no.3
    • /
    • pp.159-168
    • /
    • 2023
  • Polyolefin elastomer (POE) is widely used in a variety of applications, particularly in the manufacture of composites, due to its excellent mechanical properties, chemical resistance, and flexibility. However, POE has a high processing temperature, which causes damage to the fiber during the manufacturing process when impregnating the fiber. Therefore, ethylene vinylacetate (EVA), which has a low melting point and excellent adhesion properties, is blended with POE to reduce the processing temperature, and POE-g-MAH (Polyolefin elastomer-grafted-maleic anhydride) is used as a compatibilizer to further improve the POE/EVA blend properties. The compatibility of POE/EVA blends is observed by SEM, and the interaction between each polymer is confirmed by DSC and FT-IR. In addition, the effect of adding the compatibilizer is analyzed through mechanical properties such as tensile strength and elongation. The optimal content of compatibilizer for POE/EVA blends considering physical properties and moldability is sought, and 20 phr is determined to be the most appropriate.

Miscibility Improvement in PP and EPDM Blends via Introducing Specific Interaction (특정상호작용에 의한 폴리프로필렌/EPDM 블렌드의 상용성 향상)

  • Cho, Young-Wook;Go, Jin-Hwan;Lee, Won-Ki;Lee, Jin-Kook;Cho, Won-Jei;Ha, Chang-Sik
    • Elastomers and Composites
    • /
    • v.35 no.1
    • /
    • pp.46-52
    • /
    • 2000
  • Miscibility improvement between polypropylene(PP) and ethylene-propylene-diene-terpolymer (EPDM) was studied by introducing specific interaction into both polymers. PP was modified by grafting maleic anhydride(MAH) onto backbone, leading to MAH-grafted PP(PP-g-MAH). Sulfonated EPDM ionomer neutralized with bivalent zinc cation(ZnSEPDM) was used as one component. The blends of PP-g-MAH and ZnSEPDM were prepared at $200^{\circ}C$ in Brabender Roller Mixer. Fourier transform-infrared(FT-IR) spectroscopic and dynamic mechanical studies have been performed to investigate the miscibility. FT-IR spectral peak corresponding to carbonyl group in PP-g-MAH and that to sulfonate group in ZnSEPDM were shifted to lower and higher frequency with increasing ZnSEPDM content, respectively, in the blends. Glass transition temperature of ZnSEPDM was increased up to 70wt.% of ZnSEPDM, and again decreased above 70wt.%. It can be concluded from the shift of FT-IR characteristic peaks and the changes of glass transition temperatures that the miscibility between PP and EPDM was improved via introducing specific interaction, i.e., dipole-ion interaction.

  • PDF

Preparation of crosslinkable imide oligomers and Applications in Polyether Imides for Dual-ovenable Packaging (가교형 이미드 올리고머 제조 및 듀얼 오브너블 용기(Dual-Ovenable Packaging) 용 폴리에테르이미드에 대한 적용 연구)

  • Seo, Jongchul;Park, Su-Il;Choi, Seunghyuk;Jang, Wongbong;Han, Haksoo
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.45-52
    • /
    • 2010
  • Two different imide oligomers(6FDA-ODA/APA and 6FDA-MDA/MA) having crosslinkable end groups were prepared by using a solution imidization method and their properties were investigated. Also, semi-interpenetrating polymer networks(semi-IPN) were prepared using the blends of imide oligomers with polyetherimide $Ultem^{(R)}$, which is used in dual-ovenable packaging materials. The characteristic properties of semi-IPN films were interpreted by using TGA, Thin Film Diffusion Analyzer, and WAXD. Molecular weights of imide oligomers were successfully controlled utilizing 2-aminophenylacetylene(APA) and maleic anhydride(MA) as an endcapping agent. Exotherm reactions by crosslinking appeared and the amount of exthotherm heat was linearly increased as the content of imide oligomers was increased. For semi-IPNs of $Ultem^{(R)}$ and imide oligomers, 5% and 10% weight loss temperatures increased as the contents of imide oligomers were increased. Diffusion coefficient and water uptake of semi-IPNs decreased as the content of imide oligomers was increased, which might be resulted from hydrophobic fluorine group and high packing density. It was concluded that relatively low thermal stability and hydrolytic stability of polyetherimide $Ultem^{(R)}$ were improved by incorporating new developed imide oligomers.

Effect of 3-Amino-1,2,4-triazole on Microstructure and Properties of Maleated HDPE/Maleated EPDM Blend (3-Amino-1,2,4-triazole이 Maleated HDPE/Maleated EPDM 블렌드의 미세구조 및 물성에 미치는 영향)

  • Kim, Tae Hyun;Chang, Young-Wook;Lee, Yong Woo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.49 no.1
    • /
    • pp.24-30
    • /
    • 2014
  • 3-Amino-1,2,4-triazole (ATA) (2.5 and 5.0 phr) was incorporated into a immiscible maleated ethylene propylene diene rubber(mEPDM)/maleated high density polyethylene(mHDPE) (50 wt%/50 wt%) blend by melt mixing. Effects of the ATA on structure, mechanical and rheological properties of the blend was investigated. FT-IR and DMA results revealed that supramolecular hydrogen bonding interactions between the polymer chains occur by reaction of ATA with maleic anhydride grafted onto the component polymers in the blend, which induces the physical crosslinks in the blend. FE-SEM analysis showed that mEPDM forms a dispersed phase in continuous mHDPE matrix, and the blend with the ATA has finer phase morphology as compared to the blend without the ATA. By the addition of ATA in the blend, there were significant increases in tensile strength, modulus and elongation-at-break as well as elastic recoverability. Melt rheology studies revealed that ATA induced substantial increase in storage modulus and complex viscosity of the blend at the melt state.

Preparation and Adsorption Properties of PA6/PSMA-OA Molecularly Imprinted Composite Membranes in Supercritical CO2

  • Zhang, Qing;Zhang, Xingyuan;Zhang, Wencheng;Pan, Jian;Liu, Ling;Zhang, Haitao;Zhao, Dong;Li, Zhi
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3348-3354
    • /
    • 2011
  • Oleanolic acid (OA) as template molecule, polyamide-6 (PA6) as basement membrane and poly(styrene-comaleic acid) (PSMA) were used to prepare PA6/PSMA-OA molecularly imprinted composite membranes by phase inversion method in supercritical $CO_2$ ($ScCO_2$). The template molecule (OA), [poly(styrene-co-maleic anhydride) (PSMAH), PSMA, molecularly imprinted membranes (MIMs) imprinting OA and MIMs after elution were all characterized by Fourier transform infrared spectroscopy (FTIR). The conditions that were the mass ratio between PSMA and OA from 3:1 to 8:1, temperature of $ScCO_2$ from $35^{\circ}C$ to $50^{\circ}C$ and pressure of $ScCO_2$ 12 MPa to 17 MPa were studied. It was obtained the largest adsorption rate and purity of OA after adsorption of the resultant MIMs, 50.41% and 96.15% respectively. After using PA6 film and non-woven fabrics as basement membrane respectively, it was found that smaller aperture of PA6 was used as basement membrane, a higher adsorption rate and a higher purity of OA after adsorption of the MIMs were obtained, and so were the stability and reproducibility of the resultant MIMs. After template molecules being removed, the MIMs had effective selectivity hydrogen bonding to separately bind in the binary components to the template molecules-oleanolic acid.

Recovery of Palladium (Pd) from Spent Catalyst by Dry and Wet Method and Re-preparation of Pd/C Catalyst from Recovered Pd (폐촉매로부터 Pd회수 및 이를 이용한 Pd/C 촉매 재제조 기술 개발)

  • Kim, Ji Sun;Kwon, Ji Soo;Baek, Jae Ho;Lee, Man sig
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.376-381
    • /
    • 2018
  • The purpose of this study is to investigate and optimize an effectiveness process for the recovery of Pd from the spent Pd/C catalyst by the process of hydrogenation of maleic anhydride over Pd/C. Pd solution recovered from Pd/C catalyst was used to prepare Pd/C catalysts. Their characteristics were compared to those of Pd/C catalyst prepared by using a reagent grade precursor solution. Pd in the spent catalyst was leached by the modified process with dry and wet methods to obtain the high recovery ratio of Pd. The burn-out of carbon in the spent Pd/C catalyst was carried out in the rage of $600-900^{\circ}C$. Pd content of carbonized catalyst was confirmed by XRF and ICP. Pd was extracted from carbonized spent catalysts with acid solutions of 1,2 and 4 M HCl at a leaching temperature of $90^{\circ}C$ for 2 h. The high recovery ratio of Pd was shown as 92.4% that leached in 4 M HCl. Also Pd/C catalysts were prepared by using the leached solution and the reagent grade of $H_2PdCl_4$ as a precursor solution and the characteristics were analyzed by XRD, CO-chemisorption and FE-TEM. As a result, the dispersion of the catalyst prepared by using the leached solution was 34.6%, which was found to be equal to or more than that of the Pd/C catalyst prepared by the reagent grade precursor solution.

A Study on the Ternary GF/PA/PP Composites Manufactured by Using Pre-impregnated Glass Fiber (유리섬유를 미리 함침시켜 제조한 GF/PA/PP 삼성분 복합재료에 관한 연구)

  • 윤병선;우동진;서문호;이석현
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.701-712
    • /
    • 2000
  • The continuous fiber reinforced composites of GF/PA were fabricated using a pultrusion resin impregnation apparatus and cut into pellets of 6 mm length. GF/PA pellets were then melt-mixed with PP resin to prepare new types of ternary composites, GF/PA/PP. Mechanical and rheological properties of such composites revealed to be better than conventional ternary composites due to the longer average glass fibers. Measurements also showed that the mechanical properties of the composites prepared by direct injection molding were higher than those of the composites prepared by injection molding followed by extrusion. To improve adhesions of fiber surfaces and polymer matrix, PP-MAH (maleic anhydride) has been introduced in the GF/PA/PP composites as a compatibilizer. It was found that PP-MAH did indeed improve surface adhesion between fibers and polymer matrix and that, as a result, various mechanical properties were markedly enhanced. Visualization of the phase structure in the samples was done by means of SEM. The surfaces of glass fibers in GF/PA/PP composites revealed that the fibers remained to be encapsulated by PA resin. However, pre-encapsulation did not persist in GF/PA/PP/PP-MAH composites due to the improvement of surface adhesion between fibers and polymer matrix, although resin sticking to the fiber was observed.

  • PDF