• Title/Summary/Keyword: Major Connector

Search Result 30, Processing Time 0.019 seconds

COMPARISON OF RIGIDITY AND CASTABILITY IN DIFFERENT DESIGNS OF MAXILLARY MAJOR TITANIUM FRAMEWORK (타이타늄 상악 주연결장치에 디자인에 따른 주조성 및 견고성 비교)

  • Lee, Young-Jae;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Park, Ha-Ok;Lim, Hyun-Pil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.4
    • /
    • pp.431-443
    • /
    • 2007
  • Statement of problem: Injuries along with discomfort may result on the oral mucosa when non-rigid material is used as the major connector in construction of RPD, since nonrigid major connectors transmit unstable forces throughout the appliance. Titanium which recently draws attention as a substitute of Co-Cr had a difficulty in fabricating due to high melting temperature but the development of casting technique makes it possible to apply to the clinical case. Purpose: The purpose of this study was to investigate the rigidity and the castability of titanium upper major connector by design and make a comparison with Co-Cr major connectors which are widely used in clinical cases now. Material and methods: Casting was done using CP-Ti(Grage 2) (Kobe still Co., Japan) for the experimental groups, and 4 various designs namely palatal strap, U-shaped bar, A-P strap, and complete palatal plate were casted and 5 of each designs were included in each group. For the experimental group, Universal testing machine (Model 4502; Instron, Canton, Mass) was used to apply vertical torsional force vertically to the horizontal plane of major connector. In the second experiment, Vertical compressive force was applied to the horizontal plane of major connector. As a comparative group, Co-Cr major connector was equally manufactured and underwent the same experimental procedures Strain rate was measured after constant loading for one minute duration, and statistical analysis was done with SPSS ver.10.0 for WIN(SPSS. Inc. USA). From the one-way ANOVA and variance analysis (P=0.05), Scheffe's multiple comparison test implemented. Results: 1. Least amount of strain was observed with complete palatal plate followed by A-P bar, palatal bar, and the U-shaped bar having most amount of strain. 2. In all designs of titanium major connector, less strain rate was observed under compressive loading than under torsional loading showing more resistance to lateral force. 3. For titanium major connector, less strain rate was observed when the force is applied to the first premolar area rather than to the second molar area indicating more strength with shorter length of lever. 4. In Comparison of Co-Cr major connector with titanium major connector, palatal strap and U-shaped bar designs showed higher strength under torsional force that is statically significant, and under compressive force, no significant difference was observed expert for U-shaped bar. 5. In titanium major connector, complete palatal plate showed lowest success rate in casting when compared with the Co-Cr major connector. Conclusion: Above results prove that when using titanium for major connector, only with designs capable of generating rigidity can the major connector have almost equal amount of rigidity as Co-Cr major connector and show lower success rate in casting when compared with the Co-Cr major connector.

Estimation of Heat Generation in Multi-Contact Connector for Superconducting Magnet Application (초전도자석 시스템 응용을 위한 멀티-컨텍 커넥터의 열 발생 특성 평가)

  • Kim, M.S.;Choi, Y.S.;Kim, D.L.;Lee, Y.A.
    • Progress in Superconductivity
    • /
    • v.14 no.2
    • /
    • pp.122-127
    • /
    • 2012
  • Current leads are one of the important components for carrying the current to the coil in the superconducting magnet system. Heat leakage through the current lead is the major factor of entire heat load in the cryogenic system because current leads carry the current from room temperature to near 4 K, connecting thermally each other. Therefore, minimization heat load through current lead can reduce the operating temperature of superconducting magnet. The semi-retractable current lead, composed of multi-contact connector and HTS element, is one of good options. Comprehension of Multi-contact connector's structure, contact resistance and heat generation is essential for estimating heat generation in current leads. Multi-contact connector has several louvers inside of socket and the shape, number, size of louvers are different with the size of connector. Therefore contact area, current path and contact resistance are also different. In this study, the contact resistance in multi-contact connector is measured using the electrical power as a function of connector's size and temperature. Also, the unique correlation of electrical contact resistance is derived and heat generation is estimated for superconducting magnet application.

Practical Connector Patterns for Designing Component Frameworks (컴포넌트 프레임워크 설계를 위한 실용적인 커넥터 패턴)

  • 민현기;김수동
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.1
    • /
    • pp.43-53
    • /
    • 2004
  • Component-based development(CBD) has acquired a substantial acceptance in both academia and industry as an effective inter-organizational reuse technology. A component framework in product line engineering(PLE) which consists of related components, connectors and their semantics has a greater potential for reusability than components. In frameworks, components are glued with association, dependency and connections. Problems occur like affecting the implementation code of components when they are glued and replaced because the association and dependency relationships between COTS components which are acquired for application development do not match exactly. Especially, a connector may not only connect related components, but also mate partially-matched COTS components fit together. However, little has been studied to date about connectors that can be used practically. In this paper, we present a meta-model for connectors and show how a connector can be designed and implemented in practice. We propose five main patterns of connectors. Proposed major patterns Provide design guidelines for practical and efficient connector configuration based on component framework. And also, applying techniques and applied case studies of the major patterns show greatly increased applicability and reusability of the component without component modification.

Racking Property of Light-framed Shear Wall with Hold-down Connector (홀드다운을 적용한 경골목조 벽체의 전단성능)

  • Lee, In-Chan;Park, Chun-Young;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.26-36
    • /
    • 2008
  • As the height of the light-framed building increases, the lateral load and overturn-moment are increased and the possibility of the building overturn becomes larger. Because the shear wall resists lateral load in light-framed building, the reinforcement of shear wall is required. In order to reinforce the light-framed shear wall, using lag screw fastener type (B-HD) and using bolt type (S-HD) hold-down connectors were applied for test. And domestic larch lumbers, $38{\times}140mm$ and $89{\times}140mm$, KS 2nd grade, were used for the stud. The North American OSB panels were used for sheathing panel. Static loads, load speed 6 mm/min, were applied on top of the wall. As a result, shear strength of the wall that using hold-down connector was improved sufficiently. And when applying the S-HD type hold-down connector, stud should be reinforced against weakening by drilled hole. As increasing the number of lag screw, the number of bolt and the product allowable strength, the strength of shear wall that using hold-down connector was also increased. When applying hold-down connector to light-framed building using 38 mm stud, it must be reinforced by enlarging the thickness of stud like as 38 mm doubled column.

Tensile Properties of Metal Plate Connector in Domestic Softwood Lumber (국산 침엽수 철물접합부의 인장하중 특성)

  • Shim, Kug-Bo;Park, Jung-Hwan;Lee, June-Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.96-103
    • /
    • 2003
  • This study was conducted to evaluate the tensile properties of metal plate connector for the domestic major softwoods, such as Korean red pine, Korean white pine, and Japanese larch. The maximum tensile load of Korean red pine was 3,612kgf in AA type, it was 1.2 and 1.7 times higher load than that of Japanese larch and Korean white pine. In EA type, it was 2,704kgf, and 1.1 and 1.5 times higher than the loads of Japanese larch and Korean white pine. The failure modes of metal plate connector were metal plate withdrawal, plate tensile failure, and wood shear block failure. The failure mode of Korean red pine connector was tensile failure of plate, that is reason of the high tensile load resistance for metal plate connections in Korean red pine. The mechanical properties of metal plate connector could be predicted by the Foschi model parameter. In the initial stage, the Korean red pine connector was stiffer than the other species. The design values for metal plate connector per tooth was 25, 22, and 15kgf for Korean red pine, Japanese larch, and Korean white pine in AA type and 19, 17, and 13kgf in EA type.

Development of float off Operation Design for Mdlti Semi-submersible Barges with Symmetrical Stability Casings (반 잠수식 복수부선의 진수설계)

  • 양영태;최문길;이춘보;박병남;성석부
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.72-76
    • /
    • 2003
  • This paper presents the design concept and operation results of float-off for FSO (340,000 DWT Class, ELF AMENAM KPONO Project) built on the ground, without dry dock facilities. It was the first attempt to build FSO, completely, on the ground and launch it using DBU (Double Barge Unit, which was connected by rigid frame structure.) The major characteristics of FSO, which are similar to general VLCC type hull, including topside structure, weigh 51,000 metric ton. In order to have sufficient stability during the deck immersion of DBU, while passing through a minimum water plane area zone, proper trim control was completed with LMC (Load Master Computer). The major features of the monitoring system include calculation for transverse bending moment, shear force, local strength check of each connector, based on component stress, and deformation check during the load-out and float-off. Another major concern during the operation was to avoid damages at the bottom and sides of FSO, due to motion & movement after free-floating; therefore, adequate clearances between DBU and FSO were to be provided, and guide posts were installed to prevent side damage of the DBU casings. This paper also presents various measures that indecate the connector bending moment, damage stability analysis, and mooring of DBU during float off.

Improvement on Moment Resistance of a Concealed Timber Post Base Joint

  • Humbert, Jerome;Lee, Sang-Joon;Park, Joo-Saeng;Park, Moon-Jae
    • Journal of the Korea Furniture Society
    • /
    • v.24 no.4
    • /
    • pp.444-451
    • /
    • 2013
  • In this paper, experimental results were presented on the moment resistance of a concealed timber post base joint aimed at replacing in a modern design introduced lately the wood to wood joints used in the traditional Korean timber house - Hanok. Preliminary results showed that the original configuration of the joint offers a limited moment resistance and a low ductility and energy dissipation. In an attempt to mitigate those limitations without undergoing major changes in the connector, three new configurations were proposed and investigated. Motivated by the wish to prevent the early failure in welds, a first approach consists in directly bolting the connector's upper plate to lower the stress on the weak welds. Alternatively, another approach focused on increasing the strength of these welds by extending their length to the full width of the metal wings. Finally, a third configuration investigated the effect of those two approaches combined. In conclusion, reinforcing the welds found out to be the best option among the presented ones. As a result, this connector considered to show proper ability for use in earthquake-resistant structures with suited lateral-resistant structural elements.

  • PDF

Topology optimization of the photovoltaic panel connector in high-rise buildings

  • Lu, Xilin;Xu, Jiaqi;Zhang, Hongmei;Wei, Peng
    • Structural Engineering and Mechanics
    • /
    • v.62 no.4
    • /
    • pp.465-475
    • /
    • 2017
  • Photovoltaic (PV) panels are used in high-rise buildings to convert solar energy to electricity. Due to the considerable energy consumption of high-rise buildings, applying PV technology is of great significance to energy saving. In the application of PV panels, one of the most important construction issues is the connection of the PV panel with the main structures. One major difficulty of the connection design is that the PV panel connection consists of two separate components with coupling and indeterminate dimension. In this paper, the gap element is employed in these two separated but coupled components, i.e., hook and catch. Topology optimization is applied to optimize and design the cross-section of the PV panel connection. Pareto optimization is conducted to operate the optimization subject to multiple load scenarios. The initial design for the topology optimization is determined by the common design specified by the Technical Code for Glass Curtain Wall Engineering (JGJ 102-2003). Gravity and wind load scenarios are considered for the optimization and numerical analysis. Post analysis is conducted for the optimal design obtained by the topology optimization due to the manufactory requirements. Generally, compared with the conventional design, the optimized connector reduces material use with improved structural characteristics.

A CLINICAL EVALUATION ON THE DESIGN OF REMOVABLE PARTIAL DENTURE (국부의치 설계에 관한 임상적 연구)

  • Chang, Ik-Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.14 no.1
    • /
    • pp.66-71
    • /
    • 1976
  • The purpose of this investigation was to evaluate the mouth preparation and design of removable partial dentures. A total of 187cases for the prefabricated partial denture frameworks in both maxillary and mandibular semi-dentulous situations (66 cases and 203 cases) was selected from this study. The evaluations of mouth preparation and design observed here involved the classification of edentulous spaces, status of abutment splinting with location, design of direct retainer and structure of maxillary major connector according to the incidence of both dental arches, ages, sexes and segment of semidentulousness. The analyzed results were as follows: 1) The order of frequency rate in removable partial denture construction was Class II (50.27%), Class I (36. 90%), Class III (10.69%), and Class IV (2.14 %). 2) The distribution on design of maxillary removable partial denture prosthesis was 33.22% and 64.11% in mandibular removable partial denture prosthesis. 3) The age distribution of removable partial denture prosthesis was prominent after40 years (41.71%). 4) The design pattern of maxillary major connectors was in order of anteroposterior bar, single palatal bar, palatal strap, U-shape connector. 5) The design pattern of direct retainer was in order of Aker's clasp, I-bar clasp, backaction clasp, cuspid universal clasp. 6) The abutment for partial denture clasp splinted between premolar and premolar and its frequency rate revealed 53.44%. 7) It seemed that the location and design of the indirect retainer showed accepatble limit.

  • PDF

Prioritization of Intermodal Transportation Facilities with Considering the Budget Rate Constraints of Focal Terminal Types (교통물류거점유형별 예산비율을 고려한 연계교통시설 투자우선순위 분석)

  • Oh, Seichang;Lee, Jungwoo;Lee, Kyujin;Choi, Keechoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4D
    • /
    • pp.361-368
    • /
    • 2010
  • It is general that mostly congested sections of national backbone networks have been improved based on the national network expansion plan. However, in case of intermodal terminals which are origins of logistics, it is still so congested that travel time between origin and destination is long. Therefore, intermodal transportation systems plan of major intermodal terminals for the intermodal connector networks between intermodal terminal and national backbone network or intermodal terminal was established. With the limitation of priority methodology applying to intermodal connector facility under existing methodology, this study suggests an improved priority methodology. This study includes characteristics of terminal on the hierarchical structure and assessment list, but it does not concentrate on the specific terminal type through survey. To avoid a certain concentration, budget constraint for each terminal type was considered ahead of priority. Finally priority methodology was developed with two-step assessment under consideration that specific terminal is not involved in intermodal connector facility project. As a result of calculating weights by survey, effects such as d/c and accessibility fluctuations index through project implementation gain high weight, and degree of region underdevelopment gets next. Although the methodology in this study could not yields the priority by assessment list, it will be useful for setting the direction on policy related to intermodal connector facility projects.