• Title/Summary/Keyword: Maize primary roots

Search Result 18, Processing Time 0.032 seconds

The Effect of Sodium Tungstate on the Aldehyde Oxidase and the Growth in the Primary Root of Maize (Zea mays) (옥수수 (Zea mays) 뿌리의 알데히드 산화효소와 생장에 미치는 텅스텐산 나트륨의 영향)

  • Oh, Young-Joo;Cho, Young-Jun;Park, Woong-June
    • Journal of Life Science
    • /
    • v.17 no.7 s.87
    • /
    • pp.990-995
    • /
    • 2007
  • We tested the effect of sodium tungstate, which disturbs the molybdenum cofactor formation, on the activities of aldehyde oxidase(AO) and the growth of maize(Zea mays) primary roots. As reported in other plants, sodium tungstate inhibited AO also in the maize root concentration-dependently. The inhibitory effect of sodium tungstate was observed only when the inhibitor was applied to the living plants. Application of tungstate to the extracted protein did not show any effect. Western analysis revealed slightly decreased level of AO protein in the presence of tungstate, indicating a positive feedback of gene regulation by the product. We also tested the effects of tungstate on the root growth. The elongation of primary root and the development of lateral roots, which are sensitive to the absolute level of auxin, were decreased in the presence of sodium tungstate. However, the gravitropic curvature of the primary root, which is dependent on the relative amount of auxin at both sides, was unaffected. These data suggested the decrease of auxin biosynthesis by the application of tungstate. However, the level of free IAA was unaffected by tungstate application. We discuss the possible explanations for the observed results.

Regulation of Phorbol 12-Myristate 13-Acetate in the Gravitropic Response and Ethylene Production in Primary Roots of Maize (옥수수 뿌리에서 굴중성 반응과 에틸렌 생성에 미치는 Phorbol 12-myristate 13-acetate 조절 작용)

  • Jeong, Yun-Ho;Kim, Jong-Sik;Lee, Kon-Joo;Kim, Soon-Young
    • Journal of Life Science
    • /
    • v.22 no.1
    • /
    • pp.87-91
    • /
    • 2012
  • Phorbol 12-myristate 13-acetate (PMA), a known tumor-promoting phorbol ester, activates the signal transduction enzyme protein kinase C (PKC) in animal cells. We investigated the effect of PMA on the regulation of gravitropism via ethylene production in primary roots of maize. PMA stimulated root growth and the gravitropic response in a concentration-dependent manner at $10^{-6}$ M and $10^{-4}$ M over 8 hrs. These effects were prevented by treatment with staurosporine (STA), a potent inhibitor of PKC. These results support the possibility that the gravitropic response might be regulated through protein kinases that are involved in the signal transduction system. Ethylene is known to play a role in the regulation of root growth and gravitropism. Ethylene production was increased by about 26% and 37% of the control rate in response to $10^{-6}$ M and $10^{-4}$ M PMA, respectively. PMA also stimulated the activity of ACC synthase (ACS), which converts the S-adenosyl-L-methionine (AdoMet) to 1-aminocyclopropane-1-carboxylic acid (ACC) in the ethylene production pathway. These effects on ethylene production were also prevented by STA treatment. These results suggest that the root gravitropic response in maize is regulated through protein kinases via ethylene production.

Effect of TIBA on the Brassiolide-induced Gravitropic Response in the Primary Roots of Maize (옥수수 일차뿌리에서 TIBA가 brassinolide에 의해 유도된 굴중성 반응에 미치는 영향)

  • Kang, Byung-Hee;Park, Jea-Hye;Kim, Jong-Sik;Jang, Soo-Chul;Kim, Seung-Ki;Kim, Soon-Young
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1139-1144
    • /
    • 2009
  • It has been known that brassiolide (BL) increased the positive gravitropic response and ethylene production in maize roots. This study examined the relationship between the BL-induced gravitropic response and ethylene Production. The ethylene production was inhibited to about 90% of the control by the treatment of $10^{-4}$ M aminoethoxyvinylglycine (AVG), the ethylene synthesis inhibitor. However, the gravitropic response did not show any significant changes compared to the control at $10^{-4}$ M AVG. In the case of treatment of AVG with BL, the ethylene production decreased to 60% of the control. However, the gravitropic response increased to the level which was induced by BL. Cobalt ions, another ethylene biosynthesis inhibitor, inhibited ethylene production, but not gravitropic response. When roots were treated with BL and cobalt ions, they showed the inhibition of ethylene production and promotion of gravitropic response. To elucidate the possibility that the effect of BL is related to auxin transport, roots were treated with TIBA (2,3,5-triiodobenzoic acid), an auxin transport inhibitor. Both treatment of TIBA alone and TIBA with BL stimulated ethylene production to about 96% and 132%, respectively. However, gravitropic response was completely inhibited in both treatments. Further, roots treated with BL in the presence of TIBA and IAA showed a negative gravitropic response, which means that IAA accumulates in the upper side of horizontal roots. Root elongation was also stimulated in this treatment. Taken together, these results suggest that BL might affect the differential distribution of internal IAA on roots, causing the regulation of positive gravitropic response.

Gravitropism in the Salt-Stressed Primary Root of Maize (Zea mays) (염분 스트레스에 노출된 옥수수(Zea mays) 뿌리의 굴중성 반응)

  • Han, Du-Yeol;Lee, Young-Na;Kim, Yeo-Jae;Park, Woong-June
    • Journal of Life Science
    • /
    • v.18 no.8
    • /
    • pp.1164-1168
    • /
    • 2008
  • We investigated gravitropic responses in the primary root of maize (Zea mays) seedlings which were exposed to salt stress. The maize roots salt-stressed with higher than 100 mM NaCl or KCl started to reveal enhanced gravitropic curvature after 2 hours form the gravi-stimulation. Such a promotion was not caused by sodium phosphate, but invoked by potassium phosphate, indicating the active component is $K^{+}$. Because NaCl increased gravitropic curvature, despite that $Na^{+}$ did not played any role, we evaluated the role for $Cl^{-}$ by comparing the effects of $MgCl_2$ and $MgSO_4$. The enhancement of the curvature only with $MgCl_2$ revealed that $Cl^{-}$ played a role in the gravi-response, indicating the involvement of anion channels. These results suggest that both of $K^{+}$ and $Cl^{-}$ play roles in the regulation of osmosis that is required for cell expansion in gravitropism as well as in nyctinasty and stomatal opening.

Primary Productivity and Matter Economy of a Maize Plant Population. III. Phosphorus Economy in Relation to Dry Matter Production (옥수수 개체군의 일차생산성과 물질경제. 3. 건물생산과 인경제)

  • Huque, M. Anwarul;Seung-Dal Song
    • Journal of Plant Biology
    • /
    • v.24 no.1
    • /
    • pp.1-12
    • /
    • 1981
  • Phosphorus dynamics in terms of specific absorption rate, inflow and outflow rates. turnover rate, demand and supply, and utility index of a high yield Zea mays L. cv. Bokgyo field were evaluated using an analysis of successive production structures. The analysis was adopted for measuring quantitative changes in the population by stratified clip technique on every two weeks during the growing season. The seasonal trends of specific absorption rate (2. 4 mg P/g/day in maximum) and specific absorption efficiency (0. 03) closely correlated with that of relative growth rate of the population. The overall inflow and outflow of phosphorus was 3.41 g P/$m^2$/yr showing the maximum inflow of 2.99 g P/$m^2$/month in July. While the maximum phosphorus standing crop was 1.4 g P/$m^2$ showing the maximum turnover rate of 178% in late June. The accumulation of phosphorus along plant height declined monotonically in stems and roots but increased in foliage after heading. The proportions of the total annual demand of phosphorus were 24.4% for leaves, 22.5% for stems, 49.6% for fruits and 3.5% for roots. These demands were met with internal (18.2 %) and external (81.8 %) supplies. The seasonal highest phosphorus utility index was 1,091 in early June, while the average value was 655.

  • PDF