• Title/Summary/Keyword: Maintenance process model

Search Result 477, Processing Time 0.053 seconds

Determination of Resetting Time to the Process Mean Shift with Failure (고장을 고려한 공정평균 이동에 대한 조정시기 결정)

  • Lee, Do-Kyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.4
    • /
    • pp.145-152
    • /
    • 2019
  • All machines deteriorate in performance over time. The phenomenon that causes such performance degradation is called deterioration. Due to the deterioration, the process mean of the machine shifts, process variance increases due to the expansion of separate interval, and the failure rate of the machine increases. The maintenance model is a matter of determining the timing of preventive maintenance that minimizes the total cost per wear between the relation to the increasing production cost and the decreasing maintenance cost. The essential requirement of this model is that the preventive maintenance cost is less than the failure maintenance cost. In the process mean shift model, determining the resetting timing due to increasing production costs is the same as the maintenance model. In determining the timing of machine adjustments, there are two differences between the models. First, the process mean shift model excludes failure from the model. This model is limited to the period during the operation of the machine. Second, in the maintenance model, the production cost is set as a general function of the operating time. But in the process mean shift model, the production cost is set as a probability functions associated with the product. In the production system, the maintenance cost of the equipment and the production cost due to the non-confirming items and the quality loss cost are always occurring simultaneously. So it is reasonable that the failure and process mean shift should be dealt with at the same time in determining the maintenance time. This study proposes a model that integrates both of them. In order to reflect the actual production system more accurately, this integrated model includes the items of process variance function and the loss function according to wear level.

A Study on the Evaluation of Maintenance Capability for A Maintenance Battalion in the Mechanized Division (기계화사단 정비대대 능력 평가에 관한 연구)

  • 백종찬;강성진
    • Journal of the military operations research society of Korea
    • /
    • v.22 no.1
    • /
    • pp.142-155
    • /
    • 1996
  • In this research, our objective is to develop a model which could evaluate the maintenance capability for a maintenance battalion in the mechanized division. To analyze the maintenance system, we obtained various data related to maintenance capability and described the maintenance process as a network type. This network type model is then translated to SLAM-II network model to simulate the system. The simulation model can be operated by using appropriate input data and simulation results are obtained. The simulation model can be applied in various way. Through the simulation we could find the bottle neck point in the maintenance process. Also the maximum capability of maintenance with on hand asset and the wartime supportability can be evaluated. The mode provides sensitivity analysis by changing various imput data such as the number of repairmen, repair time, failure rate and so on.

  • PDF

Reliability Analysis of Multi-Component System Considering Preventive Maintenance: Application of Markov Chain Model (예방정비를 고려한 복수 부품 시스템의 신뢰성 분석: 마코프 체인 모형의 응용)

  • Kim, Hun Gil;Kim, Woo-Sung
    • Journal of Applied Reliability
    • /
    • v.16 no.4
    • /
    • pp.313-322
    • /
    • 2016
  • Purpose: We introduce ways to employ Markov chain model to evaluate the effect of preventive maintenance process. While the preventive maintenance process decreases the failure rate of each subsystems, it increases the downtime of the system because the system can not work during the maintenance process. The goal of this paper is to introduce ways to analyze this trade-off. Methods: Markov chain models are employed. We derive the availability of the system consisting of N repairable subsystems by the methods under various maintenance policies. Results: To validate our methods, we apply our models to the real maintenance data reports of military truck. The error between the model and the data was about 1%. Conclusion: The models developed in this paper fit real data well. These techniques can be applied to calculate the availability under various preventive maintenance policies.

A Process Mean Shift Model Considering The Increasing Maintenance Cost and The Decreasing Production Volume (보전비용 증가와 생산량 감소를 고려한 공정평균이동 모형)

  • Lee, Do-Kyung
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.3
    • /
    • pp.125-131
    • /
    • 2021
  • The problem of determining the maintenance point which minimizes the process-related total cost is called the 'process mean shift problem'. By expanding and integrating the existing maintenance models that have been partially progressed, we present a expanded and integrated maintenance model which reflects the production site where various situations occur. To implement this, we set both the upper and lower limits of the product specification, and adopted the quality loss function for conforming items. Also, we set the process variance of the wear level as a function rather than a constant. In this study, we developed two general functions to the wear level. One is about the production volume and the other is maintenance cost. As a result, this study is expected to be a maintenance model that can be applied to various processes. In the future, this study can be developed as a profit maximization model by adding profit items from product sales, and expansion to a maintenance model that introduces failure to the model of this study can be considered.

Application Markov State Model for the RCM of Combustion Turbine Generating Unit (Markov State Model을 이용한 복합화력 발전설비의 최적의 유지보수계획 수립)

  • Lee, Seung-Hyuk;Shin, Jun-Seok;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.248-253
    • /
    • 2007
  • Traditional time based preventive maintenance is used to constant maintenance interval for equipment life. In order to consider economic aspect for time based preventive maintenance, preventive maintenance is scheduled by RCM(Reliability-Centered Maintenance) evaluation. So, Markov state model is utilized considering stochastic state in RCM. In this paper, a Markov state model which can be used for scheduling and optimization of maintenance is presented. The deterioration process of system condition is modeled by a Markov model. In case study, simulation results about RCM are used to the real historical data of combustion turbine generating units in Korean power systems.

Scheduling of Preventive Maintenance for Generating Unit Considering Condition of System (시스템의 상태를 고려한 발전설비의 예방 유지보수 계획 수립)

  • Shin, Jun-Seok;Byeon, Yoong-Tae;Kim, Jin-O;Kim, Hyung-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1305-1310
    • /
    • 2008
  • Traditional maintenance planning is based on a constant maintenance interval for equipment life. In order to consider economic aspect for time based preventive maintenance, preventive maintenance is desirable to be scheduled by RCM(Reliability-Centered Maintenance) evaluation. The main objective of RCM is to reduce the maintenance cost, by focusing on the most important functions of the system and avoiding or removing maintenance actions that are not strictly necessary. So, Markov state model is utilized considering stochastic state in RCM. In this paper, a Markov state model which can be used for scheduling and optimization of maintenance is presented. The deterioration process of system condition is modeled by the stepwise Markov model in detail. Also, because the system is not continuously monitored, the inspection is considered. In case study, simulation results about RCM will be shown using the real historical data of combustion turbine generating unit in Korean power systems.

Condition-Based Model for Preventive Maintenance of Armor Units of Rubble-Mound Breakwaters using Stochastic Process (추계학적 확률과정을 이용한 경사제 피복재의 예방적 유지관리를 위한 조건기반모형)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.4
    • /
    • pp.191-201
    • /
    • 2016
  • A stochastic process has been used to develop a condition-based model for preventive maintenance of armor units of rubble-mound breakwaters that can make a decision the optimal interval at which some repair actions should be performed under the perfect maintenance. The proposed cost model in this paper based on renewal reward process can take account of the interest rate, also consider the unplanned maintenance cost which has been treated like a constant in the previous studies to be a time-dependent random variable. A function for the unplanned maintenance cost has been mathematically proposed so that the cumulative damage, serviceability limit and importance of structure can be taken into account, by which a age-based maintenance can be extended to a condition-based maintenance straightforwardly. The coefficients involved in the function can also be properly estimated using a method expressed in this paper. Two stochastic processes, Wiener process and gamma process have been applied to armor stones of rubble-mound breakwaters. By evaluating the expected total cost rate as a function of time for various serviceability limits, interest rates and importances of structure, the optimal period of preventive maintenance can easily determined through the minimization of the expected total cost rate. For a fixed serviceability limit, it shows that the optimal period has been delayed while the interest rate increases, so that the expected total cost rate has become lower. In addition, the gamma process tends to estimate the optimal period more conservatively than the Wiener process. Finally, it is found that the more crucial the level of importance of structure becomes, the more often preventive maintenances should be carried out.

Integrating Machine Reliability and Preventive Maintenance Planning in Manufacturing Cell Design

  • Das, Kanchan;Lashkari, R.S.;Sengupta, S.
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.2
    • /
    • pp.113-125
    • /
    • 2008
  • This paper presents a model for designing cellular manufacturing systems (CMS) by integrating system cost, machine reliability, and preventive maintenance (PM) planning. In a CMS, a part is processed using alternative process routes, each consisting of a sequence of visits to machines. Thus, a level of 'system reliability' is associated with the machines along the process route assigned to a part type. Assuming machine reliabilities to follow the Weibull distribution, the model assigns the machines to cells, and selects, for each part type, a process route which maximizes the overall system reliability and minimizes the total costs of manufacturing operations, machine underutilization, and inter-cell material handling. The model also incorporates a reliability based PM plan and an algorithm to implement the plan. The algorithm determines effective PM intervals for the CMS machines based on a group maintenance policy and thus minimizes the maintenance costs subject to acceptable machine reliability thresholds. The model is a large mixed integer linear program, and is solved using LINGO. The results point out that integrating PM in the CMS design improves the overall system reliability markedly, and reduces the total costs significantly.

Optimal Maintenance Cycle for Aviation Oil Testing Equipment under the Consideration of Operational Environment (운용환경을 고려한 항공오일시험장비의 최적정비주기 설정)

  • Kim, In Seok;Jung, Won
    • Journal of Applied Reliability
    • /
    • v.16 no.3
    • /
    • pp.224-230
    • /
    • 2016
  • Purpose: Military maintenance involves corrective and preventive actions carried out to keep a system in or restore it to a predetermined condition. This research develops an optimal maintenance cycle for aviation oil testing equipment with acceptable reliability level and minimum maintenance cost. Methods: The optimal maintenance policy in this research aims to satisfy the desired reliability level at the lowest cost. We assume that the failure process of equipment follows the power law non-homogeneous Poisson process model and the maintenance system is a minimal repair policy. Estimation and other statistical procedures (trend test and goodness of fit test) are given for this model. Results: With time varying failure rate, we developed reliability-based maintenance cost optimization model. This model will reduce the ownership cost through adopting a proactive reliability focused maintenance system. Conclusion: Based on the analysis, it is recommended to increase the current maintenance cycle by three times which is 0.5 year to 1.5 years. Because of the system's built-in self-checking features, it is not expected to have any problems of preventative maintenance cycle.

Development of Nexus for BIM and Documents based on Maintenance Process (유지보수공사 프로세스기반 BIM-문서 넥서스 구축)

  • Han, Ji-Ho;Park, Sang-Hun;Yoon, Sun-Jae;Koo, Kyo-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.168-169
    • /
    • 2021
  • Maintenance is carried out over a long period of time, and various documents are utilized in the maintenance work. In maintenance work which is progressed simultaneously in a short period of time, it is important to provide relevant information to the parties in a timely manner. As the types of work increase, manager needs more time and effort to select and utilize the documents. It is necessary to have an information system that supports the person in charge by grasping work procedures for each construction and providing the necessary documents and information for that step. This paper proposes an process based nexus model that can provide necessary documents to the parties to the work steps by linking the maintenance work process and BIM. Through the nexus model presented, manager can efficiently acquire the necessary documents and utilize them for the construction works currently being carried out.

  • PDF