• Title/Summary/Keyword: Maintenance of State

Search Result 985, Processing Time 0.026 seconds

Investigating the Maintenance Cost of Rest Areas: A Case Study of Nevada

  • Shrestha, Kishor;Shrestha, Pramen P.
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.624-631
    • /
    • 2022
  • Highway Rest Areas are envisioned to provide an accessible space for rest and parking for travelers, especially those driving a long distance. In addition, modern highway Rest Areas provide many amenities to highway users, including wifi service, picnic tables, litter barrels, running water, public telephones, and sometimes even free coffee. Various studies were conducted in the domain of Rest Area facility design and their operating costs in different states; however, limited studies were conducted on the maintenance costs of these facilities. Therefore, this study's main objective is to compute the annual maintenance cost of Rest Areas in the state of Nevada. This study also analyzes the main cost categories of the maintenance works. The raw cost data of Nevada Rest Area maintenance from 1990 to 2012 were collected from the Nevada Department of Transportation (NDOT). Results show that the maintenance cost fluctuated over the study period; the maintenance cost decreased from 1991 to 2004 and then increased until 2012. The primary cost categories of maintenance work are labor, equipment, and material costs. Among these, labor cost was the largest category with 56 percent of the total maintenance cost, followed by equipment cost and material cost. The findings of this study may help NDOT and other transportation agencies plan their budget for future Rest Area maintenance activities.

  • PDF

A Basic Study on the Management Status of Small Parks in the City Center - Focusing on Kimpo-si Small Park - (도심 내 소공원 유지관리 실태에 관한 기초연구 - 김포시 소공원을 중심으로 -)

  • Choi, Jung-Woo;Yeom, Sung-Jin
    • Journal of Environmental Science International
    • /
    • v.30 no.11
    • /
    • pp.915-924
    • /
    • 2021
  • Today, as interest in the importance of urban parks increases, many citied internationally are actively creating small parks, but their maintenance systems remain ineffective. Accordingly, in this study, the limitations and problems in the operation and management of urban parks were derived by examining previous studies on overall urban park maintenance and management. Based on this, the study tried to understand the actual state of maintenance and management of small parks through data surveys and field surveys related to budget execution on case sites. Then, we sought to clarify the actual state of maintenance and management of small parks through data surveys and field surveys regarding the budget execution of case sites as a basis for research to prepare an efficient and systematic improvement plan for the maintenance management system of city parks.

Towards high-accuracy data modelling, uncertainty quantification and correlation analysis for SHM measurements during typhoon events using an improved most likely heteroscedastic Gaussian process

  • Qi-Ang Wang;Hao-Bo Wang;Zhan-Guo Ma;Yi-Qing Ni;Zhi-Jun Liu;Jian Jiang;Rui Sun;Hao-Wei Zhu
    • Smart Structures and Systems
    • /
    • v.32 no.4
    • /
    • pp.267-279
    • /
    • 2023
  • Data modelling and interpretation for structural health monitoring (SHM) field data are critical for evaluating structural performance and quantifying the vulnerability of infrastructure systems. In order to improve the data modelling accuracy, and extend the application range from data regression analysis to out-of-sample forecasting analysis, an improved most likely heteroscedastic Gaussian process (iMLHGP) methodology is proposed in this study by the incorporation of the outof-sample forecasting algorithm. The proposed iMLHGP method overcomes this limitation of constant variance of Gaussian process (GP), and can be used for estimating non-stationary typhoon-induced response statistics with high volatility. The first attempt at performing data regression and forecasting analysis on structural responses using the proposed iMLHGP method has been presented by applying it to real-world filed SHM data from an instrumented cable-stay bridge during typhoon events. Uncertainty quantification and correlation analysis were also carried out to investigate the influence of typhoons on bridge strain data. Results show that the iMLHGP method has high accuracy in both regression and out-of-sample forecasting. The iMLHGP framework takes both data heteroscedasticity and accurate analytical processing of noise variance (replace with a point estimation on the most likely value) into account to avoid the intensive computational effort. According to uncertainty quantification and correlation analysis results, the uncertainties of strain measurements are affected by both traffic and wind speed. The overall change of bridge strain is affected by temperature, and the local fluctuation is greatly affected by wind speed in typhoon conditions.

Seismic deformation behaviors of the soft clay after freezing-thawing

  • Zhen-Dong Cui;Meng-Hui Huang;Chen-Yu Hou;Li Yuan
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.303-316
    • /
    • 2023
  • With the development and utilization of urban underground space, the artificial ground freezing technology has been widely used in the construction of underground engineering in soft soil areas. The mechanical properties of soft clay changed greatly after freezing and thawing, which affected the seismic performance of underground structures. In this paper, a series of triaxial tests were carried out to study the dynamic response of the freezing-thawing clay under the seismic load considering different dynamic stress amplitudes and different confining pressures. The reduction factor of dynamic shear stress was determined to correct the amplitude of the seismic load. The deformation development mode, the stress-strain relationship and the energy dissipation behavior of the soft clay under the seismic load were analyzed. An empirical model for predicting accumulative plastic strain was proposed and validated considering the loading times, the confining pressures and the dynamic stress amplitudes. The relevant research results can provide a theoretical reference to the seismic design of underground structures in soft clay areas.

Comparison of Asset Management Approaches to Optimize Navigable Waterway Infrastructure

  • Oni, Bukola;Madson, Katherine;MacKenzie, Cameron
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.3-10
    • /
    • 2022
  • An estimated investment gap of $176 billion needs to be filled over the next ten years to improve America's inland waterway transportation systems. Many of these infrastructure systems are now beyond their original 50-year design life and are often behind in maintenance due to funding constraints. Therefore, long-term maintenance strategies (i.e., asset management (AM) strategies) are needed to optimize investments across these waterway systems to improve their condition. Two common AM strategies include policy-driven maintenance and performance-driven maintenance. Currently, limited research exists on selecting the optimal AM approach for managing inland waterway transportation assets. Therefore, the goal of this study is to provide a decision model that can be used to select the optimal alternative between the two AM approaches by considering key uncertainties such as asset condition, asset test results, and asset failure. We achieve this goal by addressing the decision problem as a single-criterion problem, which calculates each alternative's expected value and certain equivalence using allocated monetary values to determine the recommended alternative for optimally maintaining navigable waterways. The decision model considers estimated and predicted values based on the current state of the infrastructure. This research concludes that the performance-based approach is the optimal alternative based on the expected value obtained from the analysis. This research sets the stage for further studies on fiscal constraints that will effectively optimize these assets condition.

  • PDF

MAINTENANCE SERVICE CONTRACTS(CASE: PHOTO-COPIER)

  • Murthy, D.N.P.
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2004.04a
    • /
    • pp.29-37
    • /
    • 2004
  • Maintenance are actions (or activities) needed to (i) control equipment degradation and failures and (ii) to restore a failed equipment to operational state. The former is termed Preventive Maintenance (PM) and the latter as Corrective Maintenance (CM).(omitted)

  • PDF

RAMS evaluation for a steel-truss arch high-speed railway bridge based on SHM system

  • Zhao, Han-Wei;Ding, You-Liang;Geng, Fang-Fang;Li, Ai-Qun
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.79-92
    • /
    • 2018
  • The evaluation theory of reliability, availability, maintainability and safety (RAMS) as a mature theory of state evaluation in the railway engineering, can be well used to the evaluation, management, and maintenance of complicated structure like the long-span bridge structures on the high-speed railway. Taking a typical steel-truss arch bridge on the Beijing-Shanghai high-speed railway, the Nanjing Dashengguan Yangtze River Bridge, this paper developed a new method of state evaluation for the existing steel-truss arch high-speed railway bridge. The evaluation framework of serving state for the bridge structure is presented based on the RAMS theory. According to the failure-risk, safety/availability, maintenance of bridge members, the state evaluation method of each monitoring item is presented. The weights of the performance items and the monitoring items in all evaluation levels are obtained using the analytic hierarchy process. Finally, the comprehensive serving state of bridge structure is hierarchical evaluated.

Maintenance Priority Index of Overhead Transmission Lines for Reliability Centered Approach

  • Heo, Jae-Haeng;Kim, Mun-Kyeom;Kim, Dam;Lyu, Jae-Kun;Kang, Yong-Cheol;Park, Jong-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1248-1257
    • /
    • 2014
  • Overhead transmission lines are crucial components in power transmission systems. Well-designed maintenance strategy for overhead lines is required for power utilities to minimize operating costs, while improving the reliability of the power system. This paper presents a maintenance priority index (MPI) of overhead lines for a reliability centered approach. Proposed maintenance strategy is composed of a state index and importance indices, taking into account a transmission condition and importance in system reliability, respectively. The state index is used to determine the condition of overhead lines. On the other hand, the proposed importance indices indicate their criticality analysis in transmission system, by using a load effect index (LEI) and failure effect index (FEI). The proposed maintenance method using the MPI has been tested on an IEEE 9-bus system, and a numerical result demonstrates that our strategy is more cost effective than traditional maintenance strategies.

Investigation of Current State Using the Management Condition Evaluation of Public Facilities in Japan (일본공공시설의 시설운영관리평가를 통한 실태조사연구 -지방자치단체간 비교분석을 통하여-)

  • Yi, Sang-Jun;Komatsu, Yukio
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.843-846
    • /
    • 2008
  • There are a lot of municipalities that do not grasp even by the current state of having public facilities though various management&maintenance researches have been done. Therefore this research aimed to make it to the foundation of the maintenance management plan establishment of the municipality in the future through investigating, analyzing the current state of management&maintenance of the public facilities. Tn the beginning, I collected data through a questionnaire of the community facilities of the municipality. To read the current state of the management condition of the object facilities from the collection data, I applied the radar chart that used the deviation value of the evaluation index and PPM matrix. As a result of the analysis, I discovered that there is a municipality thought to having efficient facilities maintenance management.

  • PDF

CONDITION MONITORING USING EMPIRICAL MODELS: TECHNICAL REVIEW AND PROSPECTS FOR NUCLEAR APPLICATIONS

  • Heo, Gyun-Young
    • Nuclear Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.49-68
    • /
    • 2008
  • The purpose of this paper is to extensively review the condition monitoring (CM) techniques using empirical models in an effort to reduce or eliminate unexpected downtimes in general industry, and to illustrate the feasibility of applying them to the nuclear industry. CM provides on-time warnings of system states to enable the optimal scheduling of maintenance and, ultimately, plant uptime is maximized. Currently, most maintenance processes tend to be either reactive, or part of scheduled, or preventive maintenance. Such maintenance is being increasingly reported as a poor practice for two reasons: first, the component does not necessarily require maintenance, thus the maintenance cost is wasted, and secondly, failure catalysts are introduced into properly working components, which is worse. This paper first summarizes the technical aspects of CM including state estimation and state monitoring. The mathematical background of CM is mature enough even for commercial use in the nuclear industry. Considering the current computational capabilities of CM, its application is not limited by technical difficulties, but by a lack of desire on the part of industry to implement it. For practical applications in the nuclear industry, it may be more important to clarify and quantify the negative impact of unexpected outcomes or failures in CM than it is to investigate its advantages. In other words, while issues regarding accuracy have been targeted to date, the concerns regarding robustness should now be concentrated on. Standardizing the anticipated failures and the possibly harsh operating conditions, and then evaluating the impact of the proposed CM under those conditions may be necessary. In order to make the CM techniques practical for the nuclear industry in the future, it is recommended that a prototype CM system be applied to a secondary system in which most of the components are non-safety grade. Recently, many activities to enhance the safety and efficiency of the secondary system have been encouraged. With the application of CM to nuclear power plants, it is expected to increase profit while addressing safety and economic issues.