• Title/Summary/Keyword: Maintenance monitoring

Search Result 1,313, Processing Time 0.024 seconds

Implementation of Responsive Web-based Vessel Auxiliary Equipment and Pipe Condition Diagnosis Monitoring System (반응형 웹 기반 선박 보조기기 및 배관 상태 진단 모니터링 시스템 구현)

  • Sun-Ho, Park;Woo-Geun, Choi;Kyung-Yeol, Choi;Sang-Hyuk, Kwon
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.562-569
    • /
    • 2022
  • The alarm monitoring technology applied to existing operating ships manages data items such as temperature and pressure with AMS (Alarm Monitoring System) and provides an alarm to the crew should these sensing data exceed the normal level range. In addition, the maintenance of existing ships follows the Planned Maintenance System (PMS). whereby the sensing data measured from the equipment is monitored and if it surpasses the set range, maintenance is performed through an alarm, or the corresponding part is replaced in advance after being used for a certain period of time regardless of whether the target device has a malfunction or not. To secure the reliability and operational safety of ship engine operation, it is necessary to enable advanced diagnosis and prediction based on real-time condition monitoring data. To do so, comprehensive measurement of actual ship data, creation of a database, and implementation of a condition diagnosis monitoring system for condition-based predictive maintenance of auxiliary equipment and piping must take place. Furthermore, the system should enable management of auxiliary equipment and piping status information based on a responsive web, and be optimized for screen and resolution so that it can be accessed and used by various mobile devices such as smartphones as well as for viewing on a PC on board. This update cost is low, and the management method is easy. In this paper, we propose CBM (Condition Based Management) technology, for autonomous ships. This core technology is used to identify abnormal phenomena through state diagnosis and monitoring of pumps and purifiers among ship auxiliary equipment, and seawater and steam pipes among pipes. It is intended to provide performance diagnosis and failure prediction of ship auxiliary equipment and piping for convergence analysis, and to support preventive maintenance decision-making.

A study on estimation of the total loss and damage ratio of maintenance monitoring sensor of subway tunnel (지하철 터널 유지관리 계측센서의 총 손망실율 산정 연구)

  • Woo, Jong-Tae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.1
    • /
    • pp.25-31
    • /
    • 2013
  • In this study, the total loss and damage ratio of maintenance monitoring which is installed and operated in the domestic and foreign tunnel structure is researched and analyzed for estimating the loss and damage ratio of maintenance monitoring sensor of subway tunnel. The total loss and damage ratio at the elapsed time of 5-6 years after installation is 14.2% in the Seoul metro line no.5,6 and 7, 14.8% in the section 1 of the Seoul metro line no.9, 13.9% in the Channel tunnel of England and all of them are close to 15%. Therefore, it is reasonable to reflect that the total loss and damage ratio of maintenance monitoring sensor of subway tunnel is estimated provisionally 15% on design, and hence the study of the loss and damage ratio with the number of elapsed years in long-term by the measurement category will be needed.

The Study of Monitoring System for Enhancement Electrical Point-machine Maintenance (전기선로전환기 유지보수 향상을 위한 모니터링 시스템의 연구)

  • Park, Jae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3115-3120
    • /
    • 2009
  • An electric point-machine which changes over a turnout so that it enables a train to be operated in the routine that a train is to proceed has been installed and used in most of the railways such as not only urban railways but also main-line railways. Most of the maintenance works in this electric point-machine is that the maintenance workers manually measure motor power, control power and display power in the site with the use of portable counters. Especially in case of NS or NS-AM electric point machine, the maintenance cycle is so frequent that during the operation casualty accidents caused by carelessness occurs as well as more staff is required for this measurement. In this paper we propose a system for monitoring the state of electric point machine installed in the site to improve maintenance efficiency and it is expected that this monitoring system confirms any measured values on electric point machines in real-time and improves maintenance efficiency.

Computer Vision-based Structural Health Monitoring: A Review

  • Jun Su Park;Joohyun An;Hyo Seon Park
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.4
    • /
    • pp.321-333
    • /
    • 2023
  • Structural health monitoring is a technology or research field that extends the service life of structures and contributes to the prevention of disaster accidents by continuously evaluating the safety, stability, and serviceability of structures as well as allowing timely and proper maintenance. However, the contact-type sensors used for it require considerable time, cost, and labor for installation and maintenance. As an alternative, computer vision has attracted attention recently. Computer vision has the potential to make quality, deformation, and damage monitoring for structures contactless and automated. In this study, research cases in which computer vision was utilized for structural health monitoring are introduced, and its effects and limitations are summarized. Therefore, the applicability and future research directions of computer vision-based structural health monitoring are discussed.

Evaluation Technique of Importance of Monitoring Systems for Earth and Rockfill Dam Safety (필댐 안전관리를 위한 계측기 중요도의 평가기법)

  • Lee, Jong-Wook;Kim, Jae-Hong;Oh, Byung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.874-882
    • /
    • 2009
  • Continuous monitoring of dam performance is essential to earth and rockfill dams safety because it has to be guaranteed for safety during construction period of course and from initial impounding to a long term maintenance period of dam. Among the 31 dams managed by Kwater at present, the proportion of dams being over 20 years after completion of construction is 42% and it is estimated that the loss rate of monitoring devices will be increase as times. Monitoring devices would be impossible to repair since those are mostly installed in the dam body and foundation. If repairing of monitoring devices is possible, the expenditure will be expensive. Therefore reasonable decision making for abandonment, repair and alternation for loss of monitoring devices would be needed through the establishment of key instrument for earth and rockfill dam safety. In this study the process of monitoring for safety were modeled by failure modes of dams, adverse conditions related to failure mode, indicators of adverse condition and monitoring devices The relationship between failure mode and monitoring devices were systematically analyzed and established and evaluation technique for qualifying the importance of monitoring devices were presented.

  • PDF

Practicalities of structural health monitoring

  • Shrive, P.L.;Brown, T.G.;Shrive, N.G.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.357-367
    • /
    • 2009
  • Structural Health Monitoring (SHM), particularly remote monitoring, is an emerging field with great potential to help infrastructure owners obtain more and up-to-date knowledge of their structures. The methodology could provide supplemental information to guide the frequency and extent of visual inspections, and the possible need for maintenance. The instrumentation for a SHM system needs to be developed with longevity and the objectives for the system in mind. Sensors need to be selected for reliability and durability, sited where they provide the maximum information for the objectives, and where they can be accessed and replaced should the need arise over the monitoring period. With the rapid changes now occurring with sensors and software, flexibility needs to be in place to allow the system to be upgraded over time. Damage detection needs to be considered in terms of the type of damage that needs to be detected, informing maintenance requirements, and how detection can be achieved. Current vibration analysis techniques appear not yet to have achieved the necessary sensitivity for that purpose. Societal factors will influence the design of a SHM system in terms of the sophistication of the instrumentation and methodology employed.

Improvement of inspection system for common crossings by track side monitoring and prognostics

  • Sysyn, Mykola;Nabochenko, Olga;Kovalchuk, Vitalii;Gruen, Dimitri;Pentsak, Andriy
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.3
    • /
    • pp.219-235
    • /
    • 2019
  • Scheduled inspections of common crossings are one of the main cost drivers of railway maintenance. Prognostics and health management (PHM) approach and modern monitoring means offer many possibilities in the optimization of inspections and maintenance. The present paper deals with data driven prognosis of the common crossing remaining useful life (RUL) that is based on an inertial monitoring system. The problem of scheduled inspections system for common crossings is outlined and analysed. The proposed analysis of inertial signals with the maximal overlap discrete wavelet packet transform (MODWPT) and Shannon entropy (SE) estimates enable to extract the spectral features. The relevant features for the acceleration components are selected with application of Lasso (Least absolute shrinkage and selection operator) regularization. The features are fused with time domain information about the longitudinal position of wheels impact and train velocities by multivariate regression. The fused structural health (SH) indicator has a significant correlation to the lifetime of crossing. The RUL prognosis is performed on the linear degradation stochastic model with recursive Bayesian update. Prognosis testing metrics show the promising results for common crossing inspection scheduling improvement.

A Study on the Sructural Behavior of Welded Built-up H-Beams for On-line Monitoring System (온-라인 구조물 계측 시스템을 위한 용접조립 H형강보의 구조적 거동에 관한 연구)

  • Ahn, Hyung-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.127-133
    • /
    • 2002
  • Most structures are constantly influenced by repeated weathering phenomena and load action during a period of its utilization, and their component materials become superannuated and their design performance becomes slowly lost. Therefore, it is thought that it is necessary to develop the online monitoring system that can make a great contribution to the maintenance management and disaster prevention of the building structure by sensing any slight change of the entire structure regardless of its inside and outside. Especially, this study was intended to explain the entire system of the online structure by interpreting welded built-up H-beams, of structural steel members having many advantages in terms of the qualities of structural materials, through limit state design, and presenting the basic plan to apply it to the structure.

Monitoring and performance assessment of a highway bridge via operational modal analysis

  • Reza Akbari;Saeed Maadani;Shahrokh Maalek
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.3
    • /
    • pp.191-205
    • /
    • 2023
  • In this paper, through operational modal analysis and ambient vibration tests, the dynamic characteristics of a multi-span simply-supported reinforced concrete highway bridge deck was determined and the results were used to assess the quality of construction of the individual spans. Supporting finite element (FE) models were created and analyzed according to the design drawings. After carrying out the dynamic tests and extracting the modal properties of the deck, the quality of construction was relatively assessed by comparing the results obtained from all the tests from the individual spans and the FE results. A comparison of the test results among the different spans showed a maximum difference value of around 9.3 percent between the superstructure's natural frequencies. These minor differences besides the obtained values of modal damping ratios, in which the differences were not more than 5 percent, can be resulted from suitable performance, health, and acceptable construction quality of the bridge.

Predictive maintenance technology for smart factory (스마트 팩토리를 위한 예지보전 기술)

  • Kwon, Dae-hoon;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.172-174
    • /
    • 2021
  • In the existing industry, maintenance was carried out in the form of preventive maintenance such as occurrence of unnecessary idle time due to limited monitoring and maintenance. However, with the advent of the Fourth Industrial Revolution, real-time monitoring is possible in many industries including mining, manufacturing, oil and gas, and commercial agriculture, and it is desired to minimize idle time due to maintenance. In particular, there is a growing interest in predictive maintenance that can reduce costs and maximize operational efficiency by predicting and maintaining a failure before equipment and equipment fail. In this study, we look at the predictive maintenance technology that can verify the abnormal condition of the equipment of the smart factory in advance and monitor the abnormal condition in real time.

  • PDF