• Title/Summary/Keyword: Maintenance Data of Weapon System

Search Result 40, Processing Time 0.023 seconds

A Study on the Prediction of Weapon System Availability Using Agent Based Modeling and simulation (에이전트 기반 모델링 및 시뮬레이션을 이용한 무기체계 가용도 예측에 관한 연구)

  • Lee, Se-Hoon;Choi, Myoung-Jin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.1
    • /
    • pp.25-34
    • /
    • 2021
  • Availability is one of the important factor for developing weapon system, because it indicates the mission capability and sustainable life cycle management of weapon system. Recently, as weapon system becomes more advanced and more complex, availability estimation becomes more important to reduce the life cycle cost of weapon system. Modeling and simulation(M&S) is useful method to describe the availability of complex weapon system applying operational environment and maintenance plan. Especially agent based model(ABM) has the strength to describe interactions between agents and environments in complex system. Therefore, this paper presents the availability estimation of weapon system using agent based model. The sample data of part list and reliability analysis is applied to build availability estimation model. User agent and mechanic agent are developed to illustrate the behavior of operation and maintenance using formal specification. Storage reliability is applied to describe failure of each parts. The experimental result shows that this model is quite useful to estimate availability of weapon system. This model may estimate more reasonable availability, if full scale data of weapon system and real field data of operation is provided.

Reliability improvement method in weapon systems through field failure data analysis (무기체계 고장사례분석으로 본 무기체계 신뢰성 개선방안)

  • Song, Il-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.110-117
    • /
    • 2018
  • Recently, as weapon systems have become more complex and multi-functional, the difficulty of the operation and maintenance of weapon systems in the military have become increasingly difficult. On the other hand, the service period of operations and maintenance workers who perform operations and maintenance has been shortened, and the skill of system operation and maintenance has been lowered. This complexity and multi-functionality of equipment cause malfunctions and errors of users and maintenance personnel, and degradation of the reliability affects availability and combat readiness. In addition, life cycle costs have been gradually increasing. Therefore, I would like to suggest an improvement plan of the design of weapon systems and ILS (Integrated Logistics Support) in order to examine the implications of failure in the military. The weapon system is operated in the ROK Navy. Data from 730 cases of failure of weapon systems was collected, and analyzed. The results of the analysis are classified into failures that can be prevented in advance and failures that cannot be prevented. This shows the portion of preventable failures in weapon systems and proposes measures to minimize failures.

Development of Quality Improvement Process based on the Maintenance Data of Weapon Systems (무기체계 정비 데이터를 활용한 품질 개선 프로세스 개발)

  • Kim, HunGil;Kwon, SeMin;Cho, KyoungHo;Sung, Si-Il
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.4
    • /
    • pp.499-510
    • /
    • 2015
  • Purpose: This paper treats the improvement of the quality and reliability of military weapon systems based on the maintenance data. Methods: The proposed method of the data integration and refinement are used to obtain the component reliability information and to find the frequently failed components based on the Pareto analysis. Based on the reliability information and the number of failed component frequencies, the target components of quality improvement are determined and improved by multiple methods such as engineering changes, special meetings, additional training and revising maintenance manuals. Results: Based on the proposed process, we find some components which need to be improved in order to enhance the quality and reliability. Conclusion: A process is developed for improving the quality and reliability of weapon systems. This process will be adopted by various weapon systems to enhance the quality and reliability, as well as reduce military spending.

The Design and Development of a Web Based Information System for Military Expendable Maintenance Supply Chains (군 정비활동을 위한 웹 기반 소모성 수리부속품 보급체인 정보체계의 설계 및 구현)

  • Woo, Hoon-Shik
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.2
    • /
    • pp.171-178
    • /
    • 2009
  • Logistic support activities for weapon systems play an important role at maintenance activities in modern warfares. These activities are essential for keeping weapon systems ready at all time. However, maintenance supplies can be delayed without a proper information system. Further, increases of mean time to repair (MTTR) and unavailability of weapon systems can be occurred. In this study, a web based information system is developed for logistic chains of class 9 supplies. Utilizing web database technologies, the developed system can provide an environment for data exchange and sharing among various participants in the supply chain.

Reliability Evaluation of Weapon System using Field Data: Focusing on Case Study of K-series Weapon System (야전데이터를 활용한 무기체계 신뢰성 평가: K계열 무기체계 사례 중심)

  • Chung, Il-Han;Lee, Hag-Yong;Park, Young-Il
    • Journal of Korean Society for Quality Management
    • /
    • v.40 no.3
    • /
    • pp.278-285
    • /
    • 2012
  • Purpose: Weapon systems have the long life cycle unlike the consumer product. Thus, the reliability of weapon system is improved during the life cycle through the steady technical change. In this paper, we deal with the method of evaluating the reliability of weapon system with the field failure data. Methods: Especially, we present how to gather the field failure data and evaluate the reliability through the case of K-series weapon system. To evaluate reliability, the reliability growth model is used and the result is discussed. Results: It is steadily improved the reliability of K-series weapon system deployed from 2000 to 2004. The frequency of the failures that affect the mission is largely reduced and MTBMF(mean time between mission failure) is also improved. Conclusion: We can guess the trend of the reliability of weapon system with the field data through this study. Furthermore, it can be used to improve the reliability and make maintenance policy.

Identify the Failure Mode of Weapon System (or equipment) using Machine Learning (Machine Learning을 이용한 무기 체계(or 구성품) 고장 유형 식별)

  • Park, Yun-Kyung;Lee, Hye-Won;Kim, Sang-Moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.64-70
    • /
    • 2018
  • The development of weapon systems (or components) is hindered by the number of tests due to the limited development period and cost, which reduces the scale of accumulated data related to failures. Nevertheless, because a large amount of failure data and maintenance details during the operational period are managed by computerized data, the cause of failure of weapon systems (or components) can be analyzed using the data. On the other hand, analyzing the failure and maintenance details of various weapon systems is difficult because of the variation among groups and companies, and details of the cause of failure are described as unstructured text data. Fortunately, the recent developments of big data processing technology, machine learning algorithm, and improved HW computation ability have supported major research into various methods for processing the above unstructured data. In this paper, unstructured data related to the failure / maintenance of defense weapon systems (or components) is presented by applying doc2vec, a machine learning technique, to analyze the failure cases.

Optimal Maintenance Cycle Plan of Aerial Weapon System Radar Considering Maintenance Cost (운영유지 비용을 고려한 항공무기체계 레이다의 최적정비주기 설정 방안)

  • Tak, Jung Ho;Jung, Won
    • Journal of Applied Reliability
    • /
    • v.18 no.2
    • /
    • pp.184-191
    • /
    • 2018
  • Purpose: The purpose of this study is to propose a method to calculate the optimal preventive maintenance cycle of radar used in the aviation weapon system of ROKAF. Methods: A hybrid model is used to estimate the optimal preventive maintenance cycle in a system that can perform condition based predictive maintenance (CBPM) through continuous diagnosis. The failure data of the radars operating in the military were used to calculate the reliability. Results: According to the research results, the reliability threshold of the radar began to decrease after 5 flights, and decreased rapidly after 12 flights. Since the second check, costs have continued to decline. Conclusion: A method is proposed to determine the cycle of optimal preventive maintenance of radar within operational budget through modeling results between reliability limit and cost for radar. The results can be used to determine the optimal preventive maintenance cycle and frequency of various avionics equipment.

A Building Scheme on LAMIS for ROK Army (한국군 종합군수지원 관리정보체계 (LAMIS) 구축방안)

  • Hong Jang-Ui;Yun Hyeon-Cheol;Byeon Jae-Jeong
    • Journal of the military operations research society of Korea
    • /
    • v.18 no.2
    • /
    • pp.1-22
    • /
    • 1992
  • Computer-aided logistics support system is recognized an essential system to reduce supply and maintenance cost, and to improve readiness of weapon system or operationable composite machines. According to these trends, this paper focuses on the design scheme and the computerization strategy of information management system for Integrated Logistics Support (ILS) work. Suggested system. LAMIS(Logistics support Analysis Management Information System) is a total system that composed of Logistics Support Analysis Management information system (LSAM), Configuration Management Information System (CMIS), Maintenance Management Information System (MMIS), Project Management System (PMS) and Information Retrival System(IRS) etc. Also, LAMIS is a computerized tool that improves current supply and maintenance support program, that attempts to reliable requirment analysis of logistics support elements, and that supports to use the existing technical specification of similar one when weapon system acquisition project is started newly. When LAMIS implication is completed, it can be applied to logistics support of defense or commercial site. Straightway, LAMIS will be enhanced with computer - aided design system, engineering drawing system, interactive electronic technical manual system, electronic data interchange system, and three dimensional simulation system to weapon system configuration. When that is done, LAMIS is CALS system.

  • PDF

A Study on the Development of FRACAS-based Failure Analysis Workflow for Military weapon system (FRACAS에 기반한 군 무기체계의 고장분석 워크플로우 구축에 대한 연구)

  • Lee, Min-Young;Kim, Wan-Gul;Kim, Kyung-Soo
    • Journal of Applied Reliability
    • /
    • v.10 no.2
    • /
    • pp.93-105
    • /
    • 2010
  • The following thesis provides an explanation for the definition of the MIL-HDBK-2155 : Failure Reporting, Analysis and Corrective Action System (FRACAS), which systemizes the collection and analysis of failure data and the feedback process of the results. It also presents a plan based on MIL-HDBK-2155 for the collection and analysis of operating specifications on weapon systems. The collection and analysis of failure data and the feedback process utilizing FRACAS contributes to identifying improvement requirements during equipment operation as well as finding and eliminating the root cause of the failures. The objective of applying FRACAS to weapon systems is to receive source data feedback for reliability enhancements and performance improvements during operation. This is done by recognizing weaknesses in the design or operation by identifying the type of failures that might occur, and by performing Failure Modes, Effects and Criticality Analysis(FMECA) and Failure Tree Analysis(FTA).

A Study on Maintainability Improvement for Underwater Weapon Training Vehicle (수중무기 훈련탄의 정비성 향상방안 연구)

  • Jeong, Jinseob
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.111-117
    • /
    • 2013
  • In this paper, we have proposed novel technique to improve maintainability for training vehicle of underwater weapon system. In case of under water weapon, the fire procedure is related with operation of expulsion system in submarines. So the submarine crews should practice the complex fire procedure of weapon system by using training vehicle, which is safer and cheaper than operational weapon. After emitted from submarine, the training vehicle rise to the surface and should be withdrawn from the sea. The recovered training vehicle is transported to maintenance depot and pass through the recycling procedure including disassembling the vehicle, data acquisition & analysis, battery charge, replacing expandable components, testing the captive equipment, and assembling the vehicle. The disassembling & assembling of training vehicle which is composed of watertight section or airframe, is time-consuming work. So in this paper, we have studied the elements of recycling procedure and propose the method to exclude the assembling & disassembling work for maintainability improvement.