• 제목/요약/키워드: Maintenance Cost Model

검색결과 593건 처리시간 0.029초

경사제 피복재의 예방적 최적 유지관리를 위한 추계학적 기대비용모형의 개발 (Development of Stochastic Expected Cost Model for Preventive Optimal- Maintenance of Armor Units of Rubble-Mound Breakwaters)

  • 이철응
    • 한국해안·해양공학회논문집
    • /
    • 제25권5호
    • /
    • pp.276-284
    • /
    • 2013
  • 비선형 누적피해모형과 경제성 모형을 결합하여 경사제 피복재를 예방적으로 최적 유지관리할 수 있는 추계학적 기대비용모형을 제안하였다. 기존 모형과의 비교를 통해 만족스럽게 검증되었으며, 관련 변수들의 민감도 분석도 자세히 수행하였다. 구조물의 중요도, 피해강도함수 그리고 저항한계에 따른 단위시간당 기대비용이 최소가 되는 최적의 보수 보강 시간을 산정할 수 있었다. 마지막으로 개발된 추계학적 기대비용모형을 경사제 피복재에 적용하였다. 구조물의 유지관리 비용과 편익을 최적화하여 어느 시점에 설계 당시 수준으로 보수 보강이 이루어져야 하는지를 정량적으로 결정할 수 있었다.

생산량이 감소하는 공정평균이동 문제에서 Cpm+ 기준의 손실함수를 적용한 보전모형 (A Maintenance Model Applying Loss Function Based on the Cpm+ in the Process Mean Shift Problem in Which the Production Volume Decreases)

  • 이도경
    • 산업경영시스템학회지
    • /
    • 제44권1호
    • /
    • pp.45-50
    • /
    • 2021
  • Machines and facilities are physically or chemically degenerated by continuous usage. The representative type of the degeneration is the wearing of tools, which results in the process mean shift. According to the increasing wear level, non-conforming products cost and quality loss cost are increasing simultaneously. Therefore, a preventive maintenance is necessary at some point. The problem of determining the maintenance period (or wear limit) which minimizes the total cost is called the 'process mean shift problem'. The total cost includes three items: maintenance cost (or adjustment cost), non-conforming cost due to the non-conforming products, and quality loss cost due to the difference between the process target value and the product characteristic value among the conforming products. In this study, we set the production volume as a decreasing function rather than a constant. Also we treat the process variance as a function to the increasing wear rather than a constant. To the quality loss function, we adopted the Cpm+, which is the left and right asymmetric process capability index based on the process target value. These can more reflect the production site. In this study, we presented a more extensive maintenance model compared to previous studies, by integrating the items mentioned above. The objective equation of this model is the total cost per unit wear. The determining variables are the wear limit and the initial process setting position that minimize the objective equation.

대형 공공연구인프라의 운영 효율성 제고를 위한 운영 및 유지관리비 평가모델 개발 기초연구 (A Basic Study on the Development of O&M Cost Assessment Model to Improve Operational Efficiency of Large Public Research Infrastructures (CAM))

  • 최선아;손승현;이성호;오엄중;한범진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.93-94
    • /
    • 2021
  • The Korean government has invested a tremendous amount of money in the last 10 years to build large public research infrastructures (LPRI). For efficient operation and maintenance of LPRI built with expensive equipment and professional engineers, reasonable budget needs to be allocated. However, it is difficult to fulfill sustainable operation and maintenance (O&M) because there is no standard on budgeting for efficient LPRI operation, including expensive equipment and manpower allocation. There have been a lot of cost assessment studies regarding O&M of high-demand facilities such as hospitals, hotels and residential buildings, but a very few on sustainable O&M of LPRI. Therefore, mid/long-term budget establishment plans for efficient LPRI O&M are required from the initial planning stage and a cost assessment model to support the plans should be developed. The objective of this paper is to propose a cost assessment model for sustainable operation and maintenance of large public research infrastructures. To do so, actual O&M data of 6 LPRI types in operation are collected, and regression analysis model (RAM) is used for development and evaluation a cost assessment model. The study result will support sustainable operation of LPRI from a business perspective and be used as basic data for continuous development of cost assessment models to establish budgets for LPRI operation from an academic perspective.

  • PDF

생애주기 비용을 이용한 철도교량의 최적유지관리 (The Optimal Maintenance Strategy of a Rail Bridge by Using Life Cycle Cost)

  • 양승이
    • 한국철도학회논문집
    • /
    • 제8권6호
    • /
    • pp.544-549
    • /
    • 2005
  • Nowadays, most of bridge networks are complete or close to completion. The biggest challenge railroad./highway agencies and departments of transportation face is the maintenance of these networks, keeping them safe and serviceable, with limited funds. To maintain the bridges effectively, there is an urgent need to predict their remaining life from a system reliability viewpoint. And, it is necessary to develop the maintenance models based on system reliability concept. In this paper, maintenance models are developed for preventive maintenance and essential maintenance by using system reliability and lifetime distributions. The proposed model is applied to an existing railroad bridge. The optimal maintenance strategy of this bridge is obtained in terms of services life extension and cumulative maintenance cost.

Control system modeling of stock management for civil infrastructure

  • Abe, Masato
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.609-625
    • /
    • 2015
  • Management of infrastructure stock is essential in sustainability of society, and its analysis and optimization are studied in the light of control system modeling in this paper. At the first part of the paper, cost of stock management is analyzed based on macroscopic statistics on infrastructure stock and economical growth. Stock management burden relative to economy is observed to become larger at low economic growth periods in developed economies. Then, control system modeling of stock management is introduced and by augmenting maintenance actions as control input, dynamic behavior of stock is simulated and compared with existing time history statistics. Assuming steady state conditions, applicability of the model to cross sectional data is also demonstrated. The proposed model is enhanced so that both preventive and corrective maintenance can be included as system inputs, i.e., feedforward and feedback control inputs. Optimal management strategy to achieve specified deteriorated stock level with minimal cost, expressed in terms of preventive and corrective maintenance actions, is derived based on estimated parameter values for corrosion of steel bridges. Relative cost effectiveness of preventive maintenance is shown when target deteriorated stock level is lower.

Extended warranty model under minimal repair-replacement warranty policy

  • Jung, Ki Mun
    • International Journal of Reliability and Applications
    • /
    • 제18권1호
    • /
    • pp.1-8
    • /
    • 2017
  • In this paper, we study an extended warranty model under minimal repair-replacement warranty (MRRW) which is suggested by Park, Jung and Park (2013). Under MRRW policy, the manufacturer is responsible for providing the minimal repair-replacement services upon the system failures during the warranty period. And if the failure occurs during the extended warranty period, only the minimal repair is conducted. Following the expiration of extended warranty, the user is solely responsible for maintaining the system for a fixed length of time period and replaces the system at the end of such a maintenance period. During the maintenance period, only the minimally repair is given for each system failure. The main purpose of this article is to suggest the extended warranty and replacement model with MRRW. Given the cost structures incurred during the life cycle of the system, we formulate the expected cost and the expected length of life cycle to obtain the expected cost rate.

  • PDF

The Analysis of User Cost according to Timing of National Highway Pavement Maintenance-Focusing on the Maesang Bidge Section in Korea

  • Kim, Yunsik;Lee, Minjae
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.606-607
    • /
    • 2015
  • The traffic volume on the road shows various trends reflecting regional characteristics for monthly and hourly, and economic loss affecting users varies according to the selected period for the maintenance of road pavements. Therefore, in this study, the user cost (or delay cost) for monthly and hourly on the work zone near the Maesang Bridge Section on Poseung-Gu, Pyeongtaek-si, Gyeonggi-do was calculated using the time series models and VISSIM, and based on the result, the effect of user cost reduction according to the selection of best maintenance period was examined. The analysis result showed that the month of the lowest user cost occurred due to the maintenance of target section was January (10,293,258 KRW/Day×1km) and the month of the greatest user cost occurred was November (13,337,495 KRW/Day×1km).

  • PDF

혼합정수계획법을 활용한 도로포장 보수구간 선정 최적화 연구 (Optimal Road Maintenance Section Selection Using Mixed Integer Programming)

  • 조건영;임희종
    • 한국도로학회논문집
    • /
    • 제19권3호
    • /
    • pp.65-70
    • /
    • 2017
  • PURPOSES : Pavement Management System contains the data that describe the condition of the road. Under limited budget, the data can be utilized for efficient plans. The objective of this research is to develop a mixed integer program model that maximizes remaining durable years (or Lane-Kilometer-Years) in road maintenance planning. METHODS : An optimization model based on a mixed integer program is developed. The model selects a cluster of sectors that are adjacent to each other according to the road condition. The model also considers constraints required by the Seoul Metropolitan Facilities Management Corporation. They select two lanes at most not to block the traffic and limit the number of sectors for one-time construction to finish the work in given time. We incorporate variable cost constraints. As the model selects more sectors, the unit cost of the construction becomes smaller. The optimal choice of the number of sectors is implemented using piecewise linear constraints. RESULTS : Data (SPI) collected from Pavement Management System managed by Seoul Metropolitan City are fed into the model. Based on the data and the model, the optimal maintenance plans are established. Some of the optimal plans cannot be generated directly in existing heuristic approach or by human intuition. CONCLUSIONS:The mathematical model using actual data generates the optimal maintenance plans.

교량 유지관리 의사결정 지원을 위한 개축비용 산정모델 개발 (Development on Reconstruction Cost Model for Decision Making of Bridge Maintenance)

  • 선종완;이동열;이민재;박경훈
    • 한국산학기술학회논문지
    • /
    • 제17권9호
    • /
    • pp.533-542
    • /
    • 2016
  • 교량의 유지관리 비용은 교량 건설 후 주기적으로 발생하게 되며 교량의 상태, 환경 조건 등 여러 요인들이 복합적으로 고려되어야 한다. 개축은 유지관리 단계에서 발생하는 조치 중 가장 최종적이며 대규모 비용이 투입되는 조치로서 교량 유지관리 의사 결정 지원을 위해서는 기본적인 개축 비용 산정 모델의 수립이 필수적이다. 본 연구에서는 교량의 개축 비용 산정을 위한 회귀 모델을 개발하였다. 이를 위해 교량관리시스템(Bridge Management System) 데이터베이스(database) 상의 교량 기본 제원을 분석하여 교량 형식별, 구성 요소별 대표 표본과 주요 영향 인자들을 정의하였다. 각 표본별 비용 산정변수를 고려하여 내역 작업을 수행하였다. 비용 산정 변수에 따른 대표 표본의 적산 결과를 회귀분석하여 상부구조, 하부구조, 기초 등의 신설 비용과 가교 설치 비용, 해체 폐기 비용에 대한 비용 모델을 도출하였다. 개발된 비용 모델을 활용하여 공용 중인 교량 형식별 개축 비용을 도출하고 단가를 산출하여 기존 문헌과의 비교 검토를 수행하였으며, 유지관리 의사결정에 효과적으로 활용될 것으로 기대된다.

수리 후 고장률이 지수적으로 증가하는 경우에 최적 예방보전 정책 (A Study on Optimal Preventive Maintenance Policy When Failure Rate is Exponentially Increasing After Repair)

  • 김태희;나명환
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제11권2호
    • /
    • pp.167-176
    • /
    • 2011
  • This paper introduces models for preventive maintenance policies and considers periodic preventive maintenance policy with minimal repair when the failure of system occurs. It is assumed that minimal repairs do not change the failure rate of the system. The failure rate under prevention maintenance received an effect by a previously prevention maintenance and the slope of failure rate increases the model where it considered. Also the start point of failure rate under prevention maintenance considers the degradation of system and that it increases quotient, it assumed. Per unit time it bought an expectation cost from under this prevention maintenance policy. We obtain the optimal periodic time and the number for the periodic preventive maintenance by using Nakagawa's Algorithm, which minimizes the expected cost per unit time.