• Title/Summary/Keyword: Maintaining Accuracy

Search Result 317, Processing Time 0.032 seconds

Method for Analysis of C3 System of Systems Using Transformation of Federation Based on an Extended DEVS Formalism (확장된 DEVS 형식론 기반 페더레이션의 변환을 통한 C3 복합 체계의 분석 방법)

  • Kang, Bong Gu;Kim, Tag Gon
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.3
    • /
    • pp.13-21
    • /
    • 2018
  • The system of systems (SoS) based analysis method for the C3 system consisting of the communication system and the command and control (C2) system has the advantage that detailed analysis is possible, but it requires long execution time per one trial, which makes the analysis of various scenarios difficult. To solve this problem, this paper proposes a method for analysis of C3 SoS using a transformation of a federation into an integrated simulation. This transformation technique reduces the execution time while maintaining accuracy by abstracting the system other than the one to be analyzed, consisting of model hypothesis and function identification. The former can construct an abstracted model for the simulation through the proposed extended Discrete Event Systems Specification (DEVS) formalism and the latter can express the characteristics of the model influenced by other systems. From the case study on C and C2 analysis, the experimental results show that this method shortened the time considerably while maintaining the accuracy within an acceptable error range and we expect that this method will enable the exploratory analysis of the complex systems other than C3.

Development of Precise Point Positioning Method Using Global Positioning System Measurements

  • Choi, Byung-Kyu;Back, Jeong-Ho;Cho, Sung-Ki;Park, Jong-Uk;Park, Pil-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.3
    • /
    • pp.217-223
    • /
    • 2011
  • Precise point positioning (PPP) is increasingly used in several parts such as monitoring of crustal movement and maintaining an international terrestrial reference frame using global positioning system (GPS) measurements. An accuracy of PPP data processing has been increased due to the use of the more precise satellite orbit/clock products. In this study we developed PPP algorithm that utilizes data collected by a GPS receiver. The measurement error modelling including the tropospheric error and the tidal model in data processing was considered to improve the positioning accuracy. The extended Kalman filter has been also employed to estimate the state parameters such as positioning information and float ambiguities. For the verification, we compared our results to other of International GNSS Service analysis center. As a result, the mean errors of the estimated position on the East-West, North-South and Up-Down direction for the five days were 0.9 cm, 0.32 cm, and 1.14 cm in 95% confidence level.

A Study on Simulation of Doppler Spectra in a Current Velocity Radar (유속 레이다에서의 도플러 스펙트럼 모의구현에 관한 연구)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2101-2107
    • /
    • 2012
  • A current velocity measurement radar for a river or a stream estimates Doppler frequencies of return echoes to extract the corresponding surface velocity information. It is very important to maintain the reliability and accuracy of these velocity estimates for water resource management such as flooding or drought conditions. However, received Doppler spectra of water surface return echoes have very widely varying shapes according to different measurement environments and weather conditions. Therefore, serious problems may arise in maintaining the reliability and accuracy of velocity estimating algorithm in a radar sensor because of Doppler spectra which can have many different kind of shapes. Therefore, in this paper, an appropriate Doppler spectrum model is suggested to simulate many various Doppler spectra. This model can be very useful in validating the reliability and accuracy of surface velocity estimates.

Survey on Operation and Maintenance of Hot-wire Anemometers (열선풍속계 보유 및 관리 실태조사와 효율적 관리방안)

  • Ha, Hyun-Chul;Kim, Tae-Hyeung;Kim, Jong-Chul;Shim, Kwang-Jin;Kim, Eun-A;Song, Se-Wook;Oh, Jung-Ryong;Jung, Ho-Keun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.2
    • /
    • pp.123-134
    • /
    • 1999
  • Hot-wire anemometers are most commonly used in measuring hood capture velocities due to their accuracy and convenience. But it was ques tionable whether they have an appropriate accuracy and they are well maintained. To answer these questions, as eries of survey and the performance test were performed. The average error turns out to be 16.93%. Many of them were out of order due to bad maintenance. They were not frequently calibrated even though the users of anemometers think the periodic calibration is necessary for maintaining the accuracy of anemometers. A possible efficient maintenance program was thus discussed.

  • PDF

A Tracking System Using Location Prediction and Dynamic Threshold for Minimizing SMS Delivery

  • Lai, Yuan-Cheng;Lin, Jian-Wei;Yeh, Yi-Hsuan;Lai, Ching-Neng;Weng, Hui-Chuan
    • Journal of Communications and Networks
    • /
    • v.15 no.1
    • /
    • pp.54-60
    • /
    • 2013
  • In this paper, a novel method called location-based delivery (LBD), which combines the short message service (SMS) and global position system (GPS), is proposed, and further, a realistic system for tracking a target's movement is developed. LBD reduces the number of short message transmissions while maintaining the location tracking accuracy within the acceptable range. The proposed approach, LBD, consists of three primary features: Short message format, location prediction, and dynamic threshold. The defined short message format is proprietary. Location prediction is performed by using the current location, moving speed, and bearing of the target to predict its next location. When the distance between the predicted location and the actual location exceeds a certain threshold, the target transmits a short message to the tracker to update its current location. The threshold is dynamically adjusted to maintain the location tracking accuracy and the number of short messages on the basis of the moving speed of the target. The experimental results show that LBD, indeed, outperforms other methods because it satisfactorily maintains the location tracking accuracy with relatively fewer messages.

Carrier Phase-Based Gps/Pseudolite/Ins Integration: Solutions Of Ambiguity Resolution And Cycle Slip Detection/Identification

  • Park, Woon-Young;Lee, Hung-Kyu;Park, Suk-Kun;Lee, Hyun-Jik
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.02a
    • /
    • pp.82-94
    • /
    • 2004
  • This paper addresses solutions to the challenges of carrier phase integer ambiguity resolution and cycle slip detection/identification, for maintaining high accuracy of an integrated GPS/Pseudolite/INS system. Such a hybrid positioning and navigation system is an augmentation of standard GPS/INS systems in localized areas. To achieve the goal of high accuracy, the carrier phase measurements with correctly estimated integer ambiguities must be utilized to update the system integration filter's states. The occurrence of a cycle slip that is undetected is, however, can significantly degrade the filter's performance. This contribution presents an effective approach to increase the reliability and speed of integer ambiguity resolution through using pseudolite and INS measurements, with special emphasis on reducing the ambiguity search space. In addition, an algorithm which can effectively detect and correct the cycle slips is described as well. The algorithm utilizes additional position information provided by the INS, and applies a statistical technique known as the cumulative-sum (CUSUM) test that is very sensitive to abrupt changes of mean values. Results of simulation studies and field tests indicate that the algorithms are performed pretty well, so that the accuracy and performance of the integrated system can be maintained, even if cycle slips exist in the raw GPS measurements.

  • PDF

Preliminary study of artificial intelligence-based fuel-rod pattern analysis of low-quality tomographic image of fuel assembly

  • Seong, Saerom;Choi, Sehwan;Ahn, Jae Joon;Choi, Hyung-joo;Chung, Yong Hyun;You, Sei Hwan;Yeom, Yeon Soo;Choi, Hyun Joon;Min, Chul Hee
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3943-3948
    • /
    • 2022
  • Single-photon emission computed tomography is one of the reliable pin-by-pin verification techniques for spent-fuel assemblies. One of the challenges with this technique is to increase the total fuel assembly verification speed while maintaining high verification accuracy. The aim of the present study, therefore, was to develop an artificial intelligence (AI) algorithm-based tomographic image analysis technique for partial-defect verification of fuel assemblies. With the Monte Carlo (MC) simulation technique, a tomographic image dataset consisting of 511 fuel-rod patterns of a 3 × 3 fuel assembly was generated, and with these images, the VGG16, GoogLeNet, and ResNet models were trained. According to an evaluation of these models for different training dataset sizes, the ResNet model showed 100% pattern estimation accuracy. And, based on the different tomographic image qualities, all of the models showed almost 100% pattern estimation accuracy, even for low-quality images with unrecognizable fuel patterns. This study verified that an AI model can be effectively employed for accurate and fast partial-defect verification of fuel assemblies.

Blood pressure measurements and hypertension in infants, children, and adolescents: from the postmercury to mobile devices

  • Lim, Seon Hee;Kim, Seong Heon
    • Clinical and Experimental Pediatrics
    • /
    • v.65 no.2
    • /
    • pp.73-80
    • /
    • 2022
  • A mercury sphygmomanometer (MS) has been the gold standard for pediatric blood pressure (BP) measurements, and diagnosing hypertension is critical. However, because of environmental issues, other alternatives are needed. Noninvasive BP measurement devices are largely divided into auscultatory and oscillometric types. The aneroid sphygmomanometer, the currently used auscultatory method, is inferior to MS in terms of limitations such as validation and regular calibration and difficult to apply to infants, in whom Korotkoff sounds are not audible. The oscillometric method uses an automatic device that eliminates errors caused by human observers and has the advantage of being easy to use; however, owing to its measurement accuracy issues, the development of an international validation protocol for children is important. The hybrid method, which combines the auscultatory and electronic methods, solves some of these problems by eliminating the observer bias of terminal digit preference while maintaining measurement accuracy; however, the auscultatory method remains limited. As the age-related characteristics of the pediatric group are heterogeneous, it is necessary to reconsider the appropriate BP measurement method suitable for this indication. In addition, the mobile application-based BP measurement market is growing rapidly with the development of smartphone applications. Although more research is still needed on their accuracy, many experts expect that mobile application-based BP measurement will effectively reduce medical costs due to increased ease of access and early BP management.

Matching Performance Analysis of Upsampled Satellite Image and GCP Chip for Establishing Automatic Precision Sensor Orientation for High-Resolution Satellite Images

  • Hyeon-Gyeong Choi;Sung-Joo Yoon;Sunghyeon Kim;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.103-114
    • /
    • 2024
  • The escalating demands for high-resolution satellite imagery necessitate the dissemination of geospatial data with superior accuracy.Achieving precise positioning is imperative for mitigating geometric distortions inherent in high-resolution satellite imagery. However, maintaining sub-pixel level accuracy poses significant challenges within the current technological landscape. This research introduces an approach wherein upsampling is employed on both the satellite image and ground control points (GCPs) chip, facilitating the establishment of a high-resolution satellite image precision sensor orientation. The ensuing analysis entails a comprehensive comparison of matching performance. To evaluate the proposed methodology, the Compact Advanced Satellite 500-1 (CAS500-1), boasting a resolution of 0.5 m, serves as the high-resolution satellite image. Correspondingly, GCP chips with resolutions of 0.25 m and 0.5 m are utilized for the South Korean and North Korean regions, respectively. Results from the experiment reveal that concurrent upsampling of satellite imagery and GCP chips enhances matching performance by up to 50% in comparison to the original resolution. Furthermore, the position error only improved with 2x upsampling. However,with 3x upsampling, the position error tended to increase. This study affirms that meticulous upsampling of high-resolution satellite imagery and GCP chips can yield sub-pixel-level positioning accuracy, thereby advancing the state-of-the-art in the field.