• Title/Summary/Keyword: Maintaining Accuracy

Search Result 317, Processing Time 0.026 seconds

Suboptimal video coding for machines method based on selective activation of in-loop filter

  • Ayoung Kim;Eun-Vin An;Soon-heung Jung;Hyon-Gon Choo;Jeongil Seo;Kwang-deok Seo
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.538-549
    • /
    • 2024
  • A conventional codec aims to increase the compression efficiency for transmission and storage while maintaining video quality. However, as the number of platforms using machine vision rapidly increases, a codec that increases the compression efficiency and maintains the accuracy of machine vision tasks must be devised. Hence, the Moving Picture Experts Group created a standardization process for video coding for machines (VCM) to reduce bitrates while maintaining the accuracy of machine vision tasks. In particular, in-loop filters have been developed for improving the subjective quality and machine vision task accuracy. However, the high computational complexity of in-loop filters limits the development of a high-performance VCM architecture. We analyze the effect of an in-loop filter on the VCM performance and propose a suboptimal VCM method based on the selective activation of in-loop filters. The proposed method reduces the computation time for video coding by approximately 5% when using the enhanced compression model and 2% when employing a Versatile Video Coding test model while maintaining the machine vision accuracy and compression efficiency of the VCM architecture.

Accuracy Improvement of Stereo-Based Distance Measurement for Close Range Vessel Positioning

  • Ogura, Tadashi;Mizuchi, Yoshiaki;Kim, Young-Bok;Choi, Yong-Woon
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.27-32
    • /
    • 2015
  • This paper describes a distance measurement system with high accuracy that utilizes a stereo-based camera and a pan-tilt unit for automatically maintaining the positional relationship between a vessel and a target on the side of a facility at a close range. The measurement system offers an advantage in that it can measure the distance to a target while tracking it. In order to improve the ability to control the position of a vessel between it and a target while maintaining the distance especially at a close range, the accuracy of the measurement system has to be improved. The accuracy of the distance measured by our system is increased with revisions of the conclusively generated data of distance measurement. We verified the accuracy of our system from an experiment, which generated results that had an accuracy of 30 mm for distances in the range between 2-8 m.

Study on Machining Speed according to Parameters in Micro ECM (가공 인자에 다른 미세 전해 가공 속도 변화 연구)

  • Kwon, Min-Ho;Park, Min-Soo;Shin, Hong-Shik;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.308-314
    • /
    • 2011
  • In micro electrochemical machining (micro ECM), machining conditions have been determined to maintain a small side gap and to machine a workpiece stably However, machining speed is slow. To improve machining speed while maintaining the form accuracy, the paper investigates machining parameters such as pulse amplitude, duty ratio, pulse on-time, and the electrolyte's temperature and concentration. The experiment in this study shows that the electrolyte's concentration is the key factor that can reduce machining time while maintaining the form accuracy Micro square columns were fabricated to confirm the machining parameters' effects.

A Study on the Retrieval Speed Improvement from Content-Based Music Information Retrieval System (내용기반 음악 검색 시스템에서의 검색 속도 향상에 관한 연구)

  • Yoon Won-Jung;Park Kyu-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.1 s.307
    • /
    • pp.85-90
    • /
    • 2006
  • In this paper, we propose the content-based music information retrieval system with improved retrieval speed and stable performance while maintaining resonable retrieval accuracy In order to solve the in-stable system problem multi-feature clustering (MFC) is used to setup robust music DB. In addition, the music retrieval speed was improved by using the Superclass concept. Effectiveness of the system with SuperClass and without SuperClass is compared in terms of retrieval speed, accuracy and retrieval precision. It is demonstrated that the use of WC and Superclass substantially improves music retrieval speed up to $20\%\~40\%$ while maintaining almost equal retrieval accuracy.

RESEARCH ON THE WAVELET METHOD FOR THE IMPROVEMENT OF COMPUTATIONAL EFFICIENCY OF TWO DIMENSIONAL FLOW PROBLEMS (2차원 비정상 유동 해석 효율 향상을 위한 Wavelet 기법 응용 연구)

  • Kang, H.M.;Hong, S.W.;Jeong, J.H.;Kim, K.H.;Lee, D.H.;Lee, D.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.42-49
    • /
    • 2008
  • A wavelet method is presented in order to improve the computational efficiency of two dimensional unsteady flow problems while maintaining the order of accuracy of conventional CFD schemes. First, by using the interpolating wavelet transformation including decomposition and thresholding, an adaptive dataset to a solution is constructed. Then, inviscid and viscous fluxes are calculated only at the points within an adaptive dataset, which enhances the computational efficiency. Second, thresholding step is modified to maintain the spatial and temporal accuracy of conventional CFD schemes automatically by selecting the threshold value between user-defined value and the magnitude of spatial or temporal truncation error. The wavelet method suggested in this study is successfully applied to various unsteady flow problems and it is shown that the computational efficiency is enhanced with maintaining the computational accuracy of CFD schemes.

  • PDF

RESEARCH ON THE WAVELET METHOD FOR THE IMPROVEMENT OF COMPUTATIONAL EFFICIENCY OF TWO DIMENSIONAL FLOW PROBLEMS (2차원 비정상 유동 해석 효율 향상을 위한 Wavelet 기법 응용 연구)

  • Kang, H.M.;Hong, S.W.;Jeong, J.H.;Kim, K.H.;Lee, D.H.;Lee, D.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.42-49
    • /
    • 2008
  • A wavelet method is presented in order to improve the computational efficiency of two dimensional unsteady flow problems while maintaining the order of accuracy of conventional CFD schemes. First, by using the interpolating wavelet transformation including decomposition and thresholding, an adaptive dataset to a solution is constructed. Then, inviscid and viscous fluxes are calculated only at the points within an adaptive dataset, which enhances the computational efficiency. Second, thresholding step is modified to maintain the spatial and temporal accuracy of conventional CFD schemes automatically by selecting the threshold value between user-defined value and the magnitude of spatial or temporal truncation error. The wavelet method suggested in this study is successfully applied to various unsteady flow problems and it is shown that the computational efficiency is enhanced with maintaining the computational accuracy of CFD schemes.

  • PDF

Management Automation Technique for Maintaining Performance of Machine Learning-Based Power Grid Condition Prediction Model (기계학습 기반 전력망 상태예측 모델 성능 유지관리 자동화 기법)

  • Lee, Haesung;Lee, Byunsung;Moon, Sangun;Kim, Junhyuk;Lee, Heysun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.413-418
    • /
    • 2020
  • It is necessary to manage the prediction accuracy of the machine learning model to prevent the decrease in the performance of the grid network condition prediction model due to overfitting of the initial training data and to continuously utilize the prediction model in the field by maintaining the prediction accuracy. In this paper, we propose an automation technique for maintaining the performance of the model, which increases the accuracy and reliability of the prediction model by considering the characteristics of the power grid state data that constantly changes due to various factors, and enables quality maintenance at a level applicable to the field. The proposed technique modeled a series of tasks for maintaining the performance of the power grid condition prediction model through the application of the workflow management technology in the form of a workflow, and then automated it to make the work more efficient. In addition, the reliability of the performance result is secured by evaluating the performance of the prediction model taking into account both the degree of change in the statistical characteristics of the data and the level of generalization of the prediction, which has not been attempted in the existing technology. Through this, the accuracy of the prediction model is maintained at a certain level, and further new development of predictive models with excellent performance is possible. As a result, the proposed technique not only solves the problem of performance degradation of the predictive model, but also improves the field utilization of the condition prediction model in a complex power grid system.

Estimation of Real Boundary with Subpixel Accuracy in Digital Imagery (디지털 영상에서 부화소 정밀도의 실제 경계 추정)

  • Kim, Tae-Hyeon;Moon, Young-Shik;Han, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.16-22
    • /
    • 1999
  • In this paper, an efficient algorithm for estimating real edge locations to subpixel values is described. Digital images are acquired by projection into image plane and sampling process. However, most of real edge locations are lost in this process, which causes low measurement accuracy. For accurate measurement, we propose an algorithm which estimates the real boundary between two adjacent pixels in digital imagery, with subpixel accuracy. We first define 1D edge operator based on the moment invariant. To extend it to 2D data, the edge orientation of each pixel is estimated by the LSE(Least Squares Error)line/circle fitting of a set of pixels around edge boundary. Then, using the pixels along the line perpendicular to the estimated edge orientation the real boundary is calculated with subpixel accuracy. Experimental results using real images show that the proposed method is robust in local noise, while maintaining low measurement error.

  • PDF

SUB-MILLIARCSECOND ACCURACY WITH THE STRUVE ASTROMETRIC SATELLITE

  • YERSHOV V. N.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.427-428
    • /
    • 1996
  • The Struve astrometric satellite which is being developed at Pulkovo Observatory in cooperation with Krasno-yarsk Institute of Applied Mechanics, S.I. Vavilov's State Optical Institute and some others space instrumentation institutes, will produce observations of a second epoch for the Hipparcos stars. The project is devoted to maintaining the Hipparcos coordinate system as well as extending it to a density of $\approx$ 100 stars per square degree. Possibilities of submilliarcsecond accuracy of observations with single aperture on-board telescopes are discussed. Requirements to the optical scheme and to the dynamic properties of the spacecraft are formulated. CCD and microchannel plates are discussed as a focal assembly detectors.

  • PDF

Assessment of Possibility for Unaccessible Areas Digital Mapping Using FDB (FDB를 이용한 비접근지역의 수치지도 제작 가능성 평가)

  • Kang, Joon-Mook;Lee, Byung-Gul;Lim, Young-Bin;Jang, Young-Il
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.341-344
    • /
    • 2007
  • National Geospatial-Intelligence Agency(NGA) developed VPF in mid 1980 to digitalize military geospatial information. However, because VPF is very complicated system and was severly inefficient in producing, maintaining, and managing the data, VPF was required to be replaced by more efficient data format. These requests resulted in an integrated schema, and eventually VPF. The main idea of using FDB in the production of digital map of non-accessible area is to increase the accuracy. This research focuses on the production of high accuracy digital map by utilizing the FDB. The accuracy of digital map by FDB and by DGN was individually compared with 1m CIB imagery of the Korean peninsula. By analyzing 38 check points based on CIB, DGN showed RMSE of 52m X axis and 49m Y axis. FDB showed 15m in X axis and 13m in Y axis. These results show that the digital map produced using FDB has much higher accuracy than DGN based digital map.

  • PDF