• 제목/요약/키워드: Main reinforcement

검색결과 618건 처리시간 0.029초

전단보강근이 배근된 철근콘크리트 보의 CFRP전단보강효과에 관한 실험적 연구 (A Study on Shear Resisting Effect of Reinforced Concrete Beams Filling-up Carbon Fiber Rod Plastic)

  • 김우현;이형석;김영식;박성무
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2005년도 춘계학술발표회 및 정기총회 2권1호(통권2호)
    • /
    • pp.175-182
    • /
    • 2005
  • The purpose of this study is to investigate experimentally the shear resisting behavior of the reinforced concrete beams strengthened with reinforcement materials(CFRP). Ten specimens were manufactured and tested under static monotonic loading. The main variables in the test were a space of steel reinforcement and direction of CFRP reinforcement. The test result Indicated that the method of CFRP increase significantly the shear strength of a reinforced concrete beam

  • PDF

고장력 주인장 철근을 사용한 전단보강이 없는 보의 전단성능에 관한 연구 (Shear Behavior of High-Strength Steel Reinforced Concrete Beams without Stirrups)

  • 손영무;윤영수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권2호
    • /
    • pp.203-210
    • /
    • 2002
  • In these days, High-strength steel prevails throughout the construction fields for the benefit of structural and economical aspects. But high-strength steel is used by the simple calculation of flexural capacities for the purpose of reducing flexural reinforcement. So, this paper is mainly focused on the shear behavior of high-strength steel reinforced concrete beams without stirrups comparing with normal-strength steel reinforced concrete beams. Specimens were made and tested with the experimental parameters, such as steel yield strength, reinforcement ratios and minimum shear reinforcement. The main result was that not only area but also the yield strength of flexural reinforcement should be considered to predict the shear capacities of concrete beams. In addition, the experimental results were simulated by modified compression field theory analysis program, RESPONSE 2000. A good agreement was achieved between the test results and program analyses.

횡방향 구속철근비에 따른 교각요소부재의 응력-변형 거동 (Stress-Strain Behavior of Confined Concrete Columns according to Transverse Reinforcement Volumetric Ratio)

  • 오병환;김기완;최승원;이재훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.37-40
    • /
    • 2004
  • An experimental study was conducted to investigate the stress-strain behavior of confined concrete columns according to transverse reinforcement volumetric ratio. Uniaxial loading tests of eleven column specimens$(250\times100\times500mm)$ with rectangular section were conducted to study effect of confinement. The main variables in this test are transverse reinforcement volumetric ratio and cross tie arrangement. the results indicate that the strength and the ductility of confined concrete columns are subjected to transverse reinforcement volumetric ration and cross tie arrangement.

  • PDF

A reliable approach for determining concrete strength in structures by using cores

  • Durmus, Aysegul;Ozturk, Hasan Tahsin;Durmus, Ahmet
    • Computers and Concrete
    • /
    • 제11권5호
    • /
    • pp.463-473
    • /
    • 2013
  • As known, concrete classes are described as strength of standard specimens produced and kept in ideal conditions, not including reinforcement and not subjected to any load effect before. Under the circumstances, transforming core strengths to the standard specimen strength is necessary and considering all parameters, affected on the core strength, is inevitable. In fact, effects of the reinforcement and the load history on concrete strength are generally neglected when these mentioned transforms are performing. The main purpose of this paper is investigating the effects of the reinforcement and the load history on the core strength. This investigation is experimentally performed on cores drilled from specimens having different keeping conditions, reinforced, unreinforced, subjected to bending and central pressure in various proportions of failure load during specified periods. Obtained results show that the importance of these effects cannot be neglected.

A Study on Deep Reinforcement Learning Framework for DME Pulse Design

  • Lee, Jungyeon;Kim, Euiho
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권2호
    • /
    • pp.113-120
    • /
    • 2021
  • The Distance Measuring Equipment (DME) is a ground-based aircraft navigation system and is considered as an infrastructure that ensures resilient aircraft navigation capability during the event of a Global Navigation Satellite System (GNSS) outage. The main problem of DME as a GNSS back up is a poor positioning accuracy that often reaches over 100 m. In this paper, a novel approach of applying deep reinforcement learning to a DME pulse design is introduced to improve the DME distance measuring accuracy. This method is designed to develop multipath-resistant DME pulses that comply with current DME specifications. In the research, a Markov Decision Process (MDP) for DME pulse design is set using pulse shape requirements and a timing error. Based on the designed MDP, we created an Environment called PulseEnv, which allows the agent representing a DME pulse shape to explore continuous space using the Soft Actor Critical (SAC) reinforcement learning algorithm.

RC 구조물의 FREP 휨 보강을 위한 해석적 연구 (Analytical Research on Flexural Strengthened by FREP of RC Structure)

  • 강성후;박선준;김민성
    • 콘크리트학회논문집
    • /
    • 제16권4호
    • /
    • pp.493-500
    • /
    • 2004
  • FREP(Fiber Reinforced Epoxy Panel)는 고인장강도, 경량성, 내부식성 및 시공성 등의 우수한 성질을 가지고 있어 손상된 RC보의 보강에 이용되고 있다. 본 연구에서는 RE보에 대한 사용 전 휨보강의 경우와 사용 중 휨보강의 경우에 대한 구성방정식을 정립하여 그 차이를 규명하고, 보강재 단부의 응력집중으로 인해 발생하는 단부박리파괴(rip-off failure)의 역학적 특성을 밝힘으로써 휨보강 효과 성능을 평가하였다. 연구결과 FREP로 휨보강된 철근콘크리트 보의 지배적인 파괴모드는 단부박리파괴이며, 본 연구의 실험 및 해석조건을 기준으로 RC 보강보의 단부박리파괴에 대한 평가를 실시한 결과 FREP 보강두께의 과다로 인한 보강단부의 급격한 휨강성의 변화로 응력집중 현상이 발생하여 단부박리파괴가 생긴다는 것을 알 수 있었다. 이는 보강 설계 시 단부박리파괴에 대한 평가가 반드시 필요한 것을 의미한다. 또한 FREP의 보강시기에 따른 보강효과를 분석한 결과 사용 전 보강(I-Type)에 비해 사용 중 보강(P-Type)의 보강효과가 감소하는 것으로 나타났다. 따라서, 기존 구조물과 같이 사용 중인 구조물을 보강하는 경우에는 이미 작용하고 있는 보강전하중(응력)으로 인한 발생 응력을 보강설계 시 고려하여야 할 것으로 판단된다.

직사각형 NRC 보의 전단성능 평가 (Evaluation of Shear Performance of Rectangular NRC Beam)

  • 이하승;이상윤;김승훈
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권1호
    • /
    • pp.81-88
    • /
    • 2022
  • NRC (New paradigm Reinforced Concrete) 보는 강판거푸집과 함께 주보강재로 사용되는 주앵글에 기본 전단보강재로 사용되는 전단앵글을 트러스 구조형태로 용접조립한 후, 현장에서 추가적인 주 철근과 전단보강근이 배근된다. 본 연구에서는 NRC 보의 전단보강재 종류(전단앵글, 경사전단보강근, U형 덮개철근)에 따른 전단실험을 통하여 NRC 보의 전단성능평가를 실시하였다. 실험결과, 실험체별 초기균열이 발생되기전 초기강성은 유사하게 나타났으며, 모든 실험체는 전단파괴되었다. 실험체의 전단보강재가 최대내력시 항복거동하였고, 전단보강재의 보강량 증가에 따라 실험전단내력이 증가하였다. 이를 볼 때 NRC 전단보강재가 전단강도 기여분에 해당하는 전단성능을 발휘하는 것으로 판단된다. 콘크리트구조기준(KDS 14 20 22)에 의한 이론내력을 산정한 결과, 전단보강재가 배근된 NRC 보 실험체들의 실험전단내력이 이론전단내력에 비하여 37~146% 크게 나타나, 이론내력식이 NRC 실험체 상세에 대하여 안전측으로 평가하였다.

Seismic resistance of exterior beam-column joints with non-conventional confinement reinforcement detailing

  • Bindhu, K.R.;Jaya, K.P.;Manicka Selvam, V.K.
    • Structural Engineering and Mechanics
    • /
    • 제30권6호
    • /
    • pp.733-761
    • /
    • 2008
  • The failure of reinforced concrete structures in recent earthquakes caused concern about the performance of beam column joints. Confinement of joint is one of the ways to improve the performance of beam column joints during earthquakes. This paper describes an experimental study of exterior beam-column joints with two non-conventional reinforcement arrangements. One exterior beam-column joint of a six story building in seismic zone III of India was designed for earthquake loading. The transverse reinforcement of the joint assemblages were detailed as per IS 13920:1993 and IS 456:2000 respectively. The proposed nonconventional reinforcement was provided in the form of diagonal reinforcement on the faces of the joint, as a replacement of stirrups in the joint region for joints detailed as per IS 13920 and as additional reinforcement for joints detailed as per IS 456. These newly proposed detailing have the basic advantage of reducing the reinforcement congestion at the joint region. In order to study and compare the performance of joint with different detailing, four types of one-third scale specimens were cast (two numbers in each type). The main objective of the present study is to investigate the effectiveness of the proposed reinforcement detailing. All the specimens were tested under reverse cyclic loading, with appropriate axial load. From the test results, it was found that the beam-column joint having confining reinforcement as per IS: 456 with nonconventional detailing performed well. Test results indicate that the non-conventionally detailed specimens, Type 2 and Type 4 have an improvement in average ductility of 16% and 119% than their conventionally detailed counter parts (Type1 and Type 3). Further, the joint shear capacity of the Type 2 and Type 4 specimens are improved by 8.4% and 15.6% than the corresponding specimens of Type 1 and Type 3 respectively. The present study proposes a closed form expression to compute the yield and ultimate load of the system. This is accomplished using the theory of statics and the failure pattern observed during testing. Good correlation is found between the theoretical and experimental results.

Experimental study on nano silica modified cement base grouting reinforcement materials

  • Zhou, Fei;Sun, Wenbin;Shao, Jianli;Kong, Lingjun;Geng, Xueyu
    • Geomechanics and Engineering
    • /
    • 제20권1호
    • /
    • pp.67-73
    • /
    • 2020
  • With the increasing number of underground projects, the problem of rock-water coupling catastrophe has increasingly become the focus of safety. Grouting reinforcement is gradually applied in subway, tunnel, bridge reinforcement, coal mine floor and other construction projects. At present, cement-based grouting materials are easy to shrink and have low strength after solidification. In order to overcome the special problems of high water pressure and high in-situ stress in deep part and improve the reinforcement effect. In view of the mining conditions of deep surrounding rock, a new type of cement-based reinforcement material was developed. We analyses the principle and main indexes of floor strengthening, and tests and optimizes the indexes and proportions of the two materials through laboratory tests. Then, observes and compares the microstructures of the optimized floor strengthening materials with those of the traditional strengthening materials through scanning electron microscopy. The test results show that 42.5 Portland cement-based grouting reinforcement material has the advantages of slight expansion, anti-dry-shrinkage, high compressive strength and high density when the water-cement ratio is 0.4, the content of bentonite is 4%, and the content of Nano Silica is 2.5%. The reinforcement effect is better than other traditional grouting reinforcement materials.

초등학교 교육환경의 범죄안전 환경계획방안에 관한 연구 (A Study on the Environmental Planning Guidelines for Crime Safety at Elementary School settings)

  • 변기동;하미경
    • 한국실내디자인학회논문집
    • /
    • 제22권2호
    • /
    • pp.211-219
    • /
    • 2013
  • The purpose of this study is to propose the environmental planning guidelines of elementary school settings for a crime safety. The research methodologies To achieve the goal, the literature review analysis and the survey were used as main research methodologies. The survey is organized as follows. First, elementary education facilities were divided into 20 spaces based on the major space. Second, after analyzing the domestic and foreign CPTED Guidelines, elements of environmental planning were classified to fit in the space. Based on this, the expert survey was conducted. The results of this study are as follows; First, it is necessary to consider specific places such as 'toilets', 'parking lot', 'in-between space', 'main access road', 'sub-access road' and 'harmful facilities around school' for safer school environment. Second, it is significant to plan 'equipment facilities' and 'outdoor space in the school setting' with priority for elementary education environment. Third, environmental planning elements for safer elementary schools can be classified into 9 factors(types) including 'natural surveillance planning', 'territoriality reinforcement planning', 'mechanical surveillance planning', 'access control planning' and 'neighborhood reinforcement planning'. Forth, regarding 'indoor space', crime-free elementary school environment can be build through 'natural surveillance planning' and 'territoriality reinforcement planning'. Finally, regarding 'outdoor space', the crime can be prevented through 'natural surveillance planning' and 'access control planning'.