• Title/Summary/Keyword: Main pump

Search Result 473, Processing Time 0.028 seconds

A Study on Rheology Properties of High Performance Wet-mix Shotcrete (고성능 습식 숏크리트의 레올로지에 관한 기초연구)

  • Choi, Sung-Yong;Yun, Kyong-Ku;Kim, Jin-Woung;Kim, Yong-Bin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.25-32
    • /
    • 2010
  • High performance shotcrete has been recently researched partly as a result of high consensus on high strength and durability. However, they are very initial step compared from the advanced countries. For instance, they has been mainly on high strength or durability without any consideration on pumpability and shootability which are very crucial on workability. The purpose of this dissertation was to make a high performance wet-mix shotcrete (high workability) which would solve the general problems of wet-mix process in Korea. For this, the main experimental variables were selected to be silica fume(0.0, 4.5, 9%), air entrained agent(0.0, 0.005%). Rheology with IBB rheometer was measured for evaluating pumpability and shootability as well as pump pressure, rebound rate and build-up thickness. The conclusions from a series of experiments were as follow: The results of analyzing the effects of AE agent and silica fume on rheology indicated that AE agent reduced both of flow resistance(G) and torque viscosity(H) and silica fume increased flow resistance (G) and reduced torque viscosity(H). An increase in the value of torque viscosity(H) produces an increase in the requried pumping pressure. These result indicated that the reduction of torque would work better at improving pumpability. And an increase flow resistance(G) improved shootability(increase build-up thickness and reduce rebound).

Oxidized Low-density Lipoprotein- and Lysophosphatidylcholine-induced $Ca^{2+}$ Mobilization in Human Endothelial Cells

  • Kim, Moon-Young;Liang, Guo-Hua;Kim, Ji-Aee;Choi, Soo-Seung;Choi, Shin-Ku;Suh, Suk-Hyo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.1
    • /
    • pp.27-32
    • /
    • 2009
  • The effects of oxidized low-density lipoprotein(OxLDL) and its major lipid constituent lysophosphatidylcholine(LPC) on $Ca^{2+}$ entry were investigated in cultured human umbilical endothelial cells(HUVECs) using fura-2 fluorescence and patch-clamp methods. OxLDL or LPC increased intracellular $Ca^{2+}$ concentration($[Ca^{2+}]_i$), and the increase of $[Ca^{2+}]_i$ by OxLDL or by LPC was inhibited by $La^{3+}$ or heparin. LPC failed to increase $[Ca^{2+}]_i$ in the presence of an antioxidant tempol. In addition, store-operated $Ca^{2+}$ entry(SOC), which was evoked by intracellular $Ca^{2+}$ store depletion in $Ca^{2+}$-free solution using the sarcoplasmic reticulum $Ca^{2+}$ pump blocker, 2, 5-di-t-butyl-l,4-benzohydroquinone(BHQ), was further enhanced by OxLDL or by LPC. Increased SOC by OxLDL or by LPC was inhibited by U73122. In voltage-clamped cells, OxLDL or LPC increased $[Ca^{2+}]_i$ and simultaneously activated non-selective cation(NSC) currents. LPC-induced NSC currents were inhibited by 2-APB, $La^{3+}$ or U73122, and NSC currents were not activated by LPC in the presence of tempol. Furthermore, in voltage-clamped HUVECs, OxLDL enhanced SOC and evoked outward currents simultaneously. Clamping intracellular $Ca^{2+}$ to 1 ${\mu}M$ activated large-conductance $Ca^{2+}$-activated $K^+(BK_{ca})$ current spontaneously, and this activated $BK_{ca}$ current was further enhanced by OxLDL or by LPC. From these results, we concluded that OxLDL or its main component LPC activates $Ca^{2+}$-permeable $Ca^{2+}$-activated NSC current and $BK_{ca}$ current simultaneously, thereby increasing SOC.

Bile Duct Ligation and Insulin-like Growth Factor-I on the Ischemia-Reperfusion Injury of the Small Bowel (쥐에서 허혈-재관류 소장 손상에 대한 담관결찰 및 Insulin-like Growth Factor-I의 영향)

  • Cha, Je-Sun;Lee, Myung-Duk
    • Advances in pediatric surgery
    • /
    • v.3 no.2
    • /
    • pp.98-107
    • /
    • 1997
  • To determine whether bile juice exclusion can prevent the mucosal damage, and Insulin-like growth factor-I can promote mucosal regeneration in ischemia-reperfusion injury of the bowel, 39 weanling rats with 10 cm of Thiry-Vella loop were studied. Animal groups were; Control, BL(common bile duct ligation), IGF{insulin-like growth factor-I(IGF-I) infusion} and IGF-BL(combined treatment). IGF-I(1.5 mg/kg/day) was continuously delivered through a subcutaneously implanted miniosmotic pump. After 15 minutes of superior mesenteric artery clamping, a tissue specimen(P) was taken after 30 minutes of reperfusion. Intestinal continuity was restored to allow oral feeding. A specimen of main tract(M) and another of the Thiry-Vella loop(T) were collected for histomorphometry after 48 hours of reperfusion and free feeding. Villus size ratio(VSR), crypt depth(CD), crypt-depth/villus-height ratio(CVR) and injury score(IS) were measured in 15 consecutive villi. The postoperative mortalities of bile duct ligation groups(BL and IGF-BL) were higher than those of other groups. In control group, VSR of M was lower(P<0.05) than P or T, but not in the other groups. VSR of M in control was lower than those in other groups. CD of T in control, IGF and IGF-BL group were higher than those of M. CD of M and T showed gradual increments from control, IGF and IGF-BL group, respectively. CVR of M and T in IGF group were higher than those in control. CVR in IGF-BL group, T was higher than M, and M was higher than P. About IS, M of BL($20.1{\pm}2.5$) and IGF-BL($20.9{\pm}3.3$) groups were significantly lower than that of control($32.4{\pm}2.5$). These results suggest that the exclusion of bile juice reduces the severity of the reperfusion injury of the mucosa, by inability to activate pancreatic enzymes and IGF-I stimulates mucosal regeneration in injured bowel, and the effect is potentiated by bile juice exclusion.

  • PDF

Sediment Transport Characteristics in a Pressure Pipeline (압력 원형관로내 유사이송특성 연구)

  • Son, Kwang Ik;Kim, Hyun Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3B
    • /
    • pp.205-209
    • /
    • 2011
  • The low carrying capacity caused by the deposition in a sewer line is one of the main reason of the urban flood. Therefore, an efficient maintenance and management of the storm water drainage system is very important to prevent urban flood. In this research, the sediment transport characteristics through a pressure pipeline were examined with laboratory experiments. Bed-forms in a pipeline, sediment rates, roughness due to sediments were examined. Experimental system consists of flow circulation system with a pump and a sediment feeder at the upstream of the pipeline. Sediments were supplied into a 60 mm-diameter and 8 m-long pipe. Maximum flow rate is $30m^3/hr$, and the sediment feeding rate range is 5 g/s~19 g/s. Governing parameters and estimation equation for sediment transport rate were developed. The mean velocity (U), coefficient of viscosity (${\mu}$), unit width bed load ($q_b$), mean diameter of particle ($d_{50}$), unit weight of sediment in water (${\gamma}^{\prime}_s$) were adopted as the most influencing factors of sediment transport patterns. The prediction equation for sediment transport rate were developed with two dimensionless terms. These two dimensionless terms showed a linear relationship with high correlation coefficient.

The quality improvement study on the crack of heat exchanger lubricating oil port in military aircraft (군용항공기 열교환기 윤활유 유입포트 균열개선 연구)

  • Park, Sung-Jae;Choi, Jae-Ho;Choi, Gil-Gyu;Lee, Dong-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.164-172
    • /
    • 2020
  • The fuel oil/heat exchanger installed in military aircraft is a device that cools the lubricant oil supplied to other devices, such as an AMAD, and a hydraulic pump using the low temperature of the fuel is cracked at the AMAD lubricant inlet port. If a crack in the heat exchanger occurs, the lubricant oil supplied to other equipment is not cooled. Therefore, the flight can no longer be performed. In this study, non-destructive inspection and microscopic examination of the fracture surface of the oil port were performed to analyze the crack tendency. The oil pipe connected to the oil port is a titanium pipe, which is fastened with over torque and has been identified as the leading cause of heat exchanger oil port cracks. In addition, it was verified as the main reason for cracking by finite element analysis. The material and diameter of the pipe were changed to improve this defect, and the applied torque was adjusted. In addition, the bending value of the pipe was adjusted to minimize the fatigue accumulation due to pulsating pressure. As a result, no cracks occurred on the heat exchanger via the ground test after the installation of an improved pipe under the same conditions.

Studies on Transport Mechanisms of Turtle Bladder I . Epithelium of Urinary Bladder (Turtle bladder의 수송기작(輸送機作)에 관한 연구 : I. 방광(膀胱)의 상피조직(上皮組織))

  • Jeon, Jin-Seok
    • Applied Microscopy
    • /
    • v.19 no.2
    • /
    • pp.119-137
    • /
    • 1989
  • It has been shown in this and earlier investigation that the turtle bladder mucosa has three main cell types on their mucosal surface. They are the granular cells, ${\alpha}$ CA cells, and ${\beta}$ CA cells. The three major transport mechanisms that occurs in the turtle bladder are sodium reabsorption, proton secretion, and bicarbonate secretion. In the present work the trans-port mechanisms by bladder epithelial cells of freshwater turtle, Pseudemys scripta, are summarized as follows. 1. The granular cells play an important role in sodium transport, while the ${\alpha}$ and ${\beta}$ CA cells do not appear to play a determining role in sodium transport. 2. It appears that the active sodium transport in the granular cells occurs in two-step process, implying that first, sodium diffuses into the cells, followed by an energy-dependent efflux step, which is catalyzed by the ouabain-sensitive Na-K ATPase. 3. The ${\alpha}$ type of CA cells are responsible for the proton secretion using the proton pump on the apical plasma membrane, while the ${\beta}$ type of CA cells are believed to be responsible for bicarbonate secretion. 4. When looked at under freeze-fracture electron microscopy, the apical plasma membrane of ${\alpha}$ cells have a characteristic population of rod-shaped intramembranous particles which are believed to be components of the proton pumps. Conversely, ${\beta}$ type of CA cells show rod-shaped particles in their basolateral plasma membranes, which is consistent with the proton absorptive, bicarbonate secretory mechanism. 5. In the turtle bladder, the ${\alpha}$ and ${\beta}$ type of cells are believed to be both responsible for proton transport, but in opposite directions.

  • PDF

Mechanical Properties of a High-temperature Superconductor Bearing Rotor in a 10 kWh Class Superconductor Flywheel Energy Storage System (10 kWh급 초전도 베어링 회전자의 기계적 특성 평가)

  • Park, B.J.;Jung, S.Y.;Kim, C.H.;Han, S.C.;Park, B.C.;Han, S.J.;Doo, S.G.;Han, Y.H.
    • Progress in Superconductivity
    • /
    • v.13 no.1
    • /
    • pp.58-63
    • /
    • 2011
  • Recently, superconductor flywheel energy storage systems (SFESs) have been developed for application to a regenerative power of train, a power quality improvement, the storage of distributed power sources such as solar and wind power, and a load leveling. As the high temperature superconductor (HTS) bearings offer dynamic stability without the use of active control, accurate analysis of the HTS bearing is very important for application to SFESs. Mechanical property of a HTS bearing is the main index for evaluating the capacity of an HTS bearing and is determined by the interaction between the HTS bulks and the permanent magnet (PM) rotor. HTS bearing rotor consists of PM and iron collector and the proper dimension design of them is very important to determine a supporting characteristics. In this study, we have optimized a rotor magnet array, which depends on the limited bulk size and performed various dimension layouts for thickness of the pole pitch and iron collector. HTS bearing rotor was installed into a single axis universal test machine for a stiffness test. A hydraulic pump was used to control the amplitude and frequency of the rotor vibration. As a result, the stiffness result showed a large difference more than 30 % according to the thickness of permanent magnet and iron collector. This is closely related to the bulk stiffness controlled by flux pining area, which is limited by the total bulk dimension. Finally, the optimized HTS bearing rotor was installed into a flywheel system for a dynamic stability test. We discussed the dynamic properties of the superconductor bearing rotor and these results can be used for the optimal design of HTS bearings of the 10kWh SFESs.

Antioxidant Activities of Glycyrrhizin and its Effect on Renal Expression of Na,K-ATPase in Gentamicin-induced Acute Renal Failure Rats (Glycyrrhizin의 항산화 활성 및 Gentamincin 유도 급성 신부전 백서 신장의 Na,K-ATPase 발현에 미치는 영향)

  • Sohn Eun Jin;Kang Dae Gill;Lee An Sook;Lee Yun Mi;Yin Ming Hao;Yeum Kee Bok;Noh Suk Yun;Lee Ho Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.542-548
    • /
    • 2003
  • The present study was aimed to investigate whether glycyrrhizin, which is the major component of Glycyrrhiza uralensis, has an antioxidant effect and regulatory effect on Na,K-ATPase in gentamicin-induced acute renal failure (ARF) rats . It is well known that reactive oxygen species (ROS), such as superoxide anion and hydroxyl radical, are main pathophysiological factor in gentamicin-induced ARF. Glycyrrhizin showed potent in vitro antioxidant activity, especially superoxide scavenging activity, in a dose-dependent manner. Plasma lipid peroxide level was restored to normal level by oral administration of glycyrrhizin (200 mg/kg) in the gentamicin-induced ARF rats. The expression of Na,K-ATPase α1 subunit was restored in the gentamicin-induced ARF rats by administration of glycyrrhizin, whereas β1 subunit was not restored. The renal functional parameters including urine volume, cleatinine clearance, urine osmolality, solute-free water reabroption were also partially restored in gentamicin-ARF rats by administration of glycyrrhizin. Taken together, the amelioration of renal functions and the expression of sodium pump by administration of glycyrrhizin in the gentamicin-induced ARF was appear to be mediated by the scavenging of ROS.

Kilohertz Gain-Switched Ti:sapphire Laser Operation and Femtosecond Chirped-Pulse Regenerative Amplification (KHz 반복률에서의 Ti:sapphire 이득 스위칭 레이저 발진과 펨토초 처프펄스 재생 증폭)

  • Lee, Yong-In;Ahn, Yeong-Hwan;Lee, Sang-Min;Seo, Min-Ah;Kim, Dai-Sik;Rotermund, Fabian
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.556-563
    • /
    • 2006
  • We present a comprehensive study of a chirped pulse Ti:sapphire regenerative amplifier system operating at 1 kHz. Main constituents of the system are described in detail. The amplifier stage was first converted to a repetition rate-tunable kHz gain-switched nanosecond Ti:sapphire laser. Operation characteristics at different repetition rates such as build-up times of laser pulses, pump power-dependent output powers and pulse durations, damage thresholds, and tunability ranges were studied. Based on the results achieved, the switching time of the Pocket's cell used and the round trip numbers in the regenerative amplifier were optimized at 1 kHz. The output pulses with a pulse width of 50fs from a home-made Ken lens mode-locked Ti:sapphire oscillator were used as seed pulses. The pulses were expanded to 120ps in a grating stretcher prior to coupling into the 3-mirror amplifier cavity. After amplification and recompression, a stable 1kHz Ti:sapphire regenerative amplifier system, which delivers 85-fs, $320-{\mu}J$ pulses, was fully constructed.

Condensation Heat Transfer Characteristics of R-410A as an Alternative R-22 in the Condenser with Small Diameter Tubes (세관을 사용한 응축기에서 R-22의 대체냉매인 R-410A의 응축 열전달 특성)

  • Son, Chang-Hyo
    • Clean Technology
    • /
    • v.13 no.2
    • /
    • pp.151-158
    • /
    • 2007
  • An experimental study to investigate the condensing heat transfer characteristics of small diameter horizontal double pipe heat exchangers with R-22 and R-410A was performed. Experimental facility was constructed to calculate and observe HTC(heat transfer coefficients), flow patterns and pressure drop. The main components include a liquid pump, an evaporator, a condenser(test section), a sight-glass, pressure taps and measurement apparatus. Two pipes of different diameters are tested; One 5.35 mm ID 0.5 mm thick, the other 3.36 mm ID 0.7 mm thick. The mass flow rate ranged from 200 to $500\;ks/m^2{\cdot}s$ and heating capacity were form 1.0 to 2.4 kW. The flow patterns of R-22 and R-410A were observed with a high speed camera through the sight-glass. The tests revealed that HTC of R-410A was higher than that of R-22 by maximum 5%. Annular pattern was observed for the most cases but stratified flow was also detected when x<0.2. The pressure drop in 3.36 mm ID pipe was higher than that of 5.35 mm by $30{\sim}50%$. Comparing with previous correlations such as Shah, Fujii and Soliman's, Fujii' showed the best good agreement with my data with a maximum deviation of 40%.

  • PDF