• Title/Summary/Keyword: Main pump

Search Result 472, Processing Time 0.027 seconds

Performance and Thermal Endurance Tests of a High Pressure Pump Fueled with DME (DME를 연료로 하는 고압펌프의 성능 및 내열 특성 평가)

  • BAEK, BUM-GI;LIM, OCK-TAECK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.89-95
    • /
    • 2020
  • The main scope of this paper is to see if the conventional pump can be properly used for a specific fuel, Di-methyl Ether (DME) despite of its low lubricity and high reactivity in the experimental conditions. A wobble plate type fuel pump was connected to the common rail to verify that the pump could deliver the fuel at the required pressure and resultantly DME could be used as fuel without modifying the original pump. At each required pressure (30 Mpa, 35 Mpa, 40 Mpa, 45 Mpa, and 50 Mpa), the pump met the pressure required by the common rail. In addition, pump performance experiments tended to follow the usual performance curve while the flow rate decreased as the pressure increased. The maximum flow rate of the pump was 470 kg/h at 30 Mpa and all measurements were taken with keeping DME temperature below 60℃.

Optimization Design of Stainless Steel Stamping Multistage Pump Based on Orthogonal Test

  • Weidong, Shi;Chuan, Wang;Weigang, Lu;Ling, Zhou;Li, Zhang
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.309-314
    • /
    • 2010
  • Stainless steel stamping multistage pump has become the mainstream of civil multi-stage pump. Combined with the technological features of stamping and welding pump, the studies of design for hydraulic parts of pump were come out. An $L_{18}$$3^7$)orthogonal experiment was designed with seven factors and three values including blade inlet angle, impeller outer diameter, guide vane blade number, etc. 18 plans were designed. The two stage of whole flow field on stainless steel stamping multistage pump at design point for design was simulated by CFD. According to the test result and optimization design with experimental research, the trends of main parameters which affect hydraulic performance were got. After being manufactured and tested, the efficiency of the optimal model pump reaches 61.36% and the single head is more than 4.8 m. Compared with the standard efficiency of 53%, the design of the stainless steel stamping pump is successful. The result would be instructive to the design of Stainless steel stamping multistage pump designed by the impeller head maximum approach.

Hydrogen Pumping Characteristics of a Scroll Pump (스크롤 펌프의 수소 배기특성)

  • In S. R.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.14-23
    • /
    • 2006
  • The scroll pump is widely used in ultra clean vacuum systems. However, there is no commonly available information on the hydrogen pumping characteristics of this pump, which creates a difficulty in determining whether the scroll pump can be used or not in a fusion experiment system where hydrogen ,is the main working gas. In this paper the experimental setup, measurement procedures, experimental results, and discussions on the pumping speed, the maximum compression ratio and the back-streaming properties of the scroll pump, especially for the hydrogen gas, are reported.

Studies on Effects of Dredging Works in non-cohesive Soils (모래지반의 준설시 준설효율 검토)

  • Yang, Tae-Seon;Park, Hong-Shin;Min, Kyoung-Ho;Lee, Choong-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1065-1070
    • /
    • 2008
  • The evaluation of dredging works of pump dredger considering soil conditions is a main idea in calculating construction costs in non-cohesive soil layers. For using pump dredger, on effects of pump dredger equipment, some data of overseas code for pump dredger are different to those of results and a pump dredging capability table in the field of costs. In this study, considerations of sandy soils are described for application of construction works.

  • PDF

An Introduction of Pumps Installed for Marine Use (선박용 펌프의 소개)

  • Lee, Sang-Il;Lee, Young-Ho;Kim, You-Taek
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.363-366
    • /
    • 2006
  • Various kinds of ships(Cargo ship, Passenger ship, Training ship, Special ship etc.) are operated to transport cargo or passengers at sea in the world. Most of the important auxiliary machinery which is installed are fluid machinery in those ships. A large percentage of fluid machinery is pumps which are classified turbo and non-turbo type. While much previous research has focused on pumps for shore use, very little is known about ship's pump. In order to develop an understanding of ship's pump, we introduce common pumps used in every ship and special pumps based on ship's type. This exploratory study lays the groundwork for further investigation of ship's pumps

  • PDF

A Study on the Analysis of Structural Behaviors the Swash-Type Piston Pump (사판식 피스톤 펌프의 구조적 거동 해석에 관한 연구)

  • Kim, Jeong-Hwa;Shin, Mi-Jung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.3
    • /
    • pp.125-132
    • /
    • 2016
  • The swash-type piston pump is a device that discharges as much volume of hydraulic oil generated as it moves the ramp by controlling the angle of the swash. This pump is suitable for high-speed high pressurization, and due to its useful characteristic being the variable capacity-type, it is used as a main pump for heavy equipment in various fields such as defense, shipbuilding, construction, etc. This study intends to obtain optimal design values by conducting a structural analysis in order to verify its reliability during the design process of the newly developed swash-type piston pump.

Performance Analysis of Solar Thermal System with Heat Pump for Domestic Hot Water and Space Heating (온수 급탕 및 난방을 위한 히트 펌프 태양열 시스템의 성능 분석)

  • Sohn, Jin-Gug
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.5
    • /
    • pp.49-62
    • /
    • 2018
  • This study aims to analyze the performance of solar thermal system with heat pump for domestic hot water and heat supply. There are four types of system. Systems are categorized based on the existence of a heat pump and the ways of controlling the working fluid circulating from the collector. Working fluid is controlled by either temperature level (categorized as system 1 and 2) or sequential flow (system 3 and 4). Heat balance of the system, the solar fraction, hot water and heating supply rates, and performance of heat pump are analyzed using TRNSYS and TESS component programs. Technical specifications of the main facilities are as follow; the area of the collector to $25m^2$, the volumes of the main tank and the buffer tank to $0.5m^3$ and $0.8m^3$, respectively. Heating capacity of the heat pump in the heating mode is set to 30,000 kJ / hr. Hot water supply set 65 liters per person each day, total heat transfer coefficient of the building to 1,500 kJ / kg.K. Indoor temperature is kept steadily around $22^{\circ}C$. The results are as follows; 6 months average solar fraction of system 1 turns out to be 39%, which is 6.7% higher than system 2 without the heat pump, indicating a 25% increase of solar fraction compared to that of system 2. In addition, the solar fraction of system 1 is 2% higher than that of system 3. Hot water and heating supply rate of system 1 are 93% and 35%, respectively. Considering the heat balance of the system, higher heat efficiency, and solar fraction, as whole, it can be concluded that system 1 is the most suitable system for hot water and heat supply.

Flow Analysis of Water Pump for Clean Disel Engine Application (클린 디젤엔진용 워터펌프 유동해석)

  • Lee, Dongju;Kim, Taeyoung;Chon, Mun Soo
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.2
    • /
    • pp.61-65
    • /
    • 2014
  • Pressure distribution around rotating impeller blades in centrifugal pump has been main issue for design of efficient and high performance automotive water pump. In addition, pressure losses of inlet water pipes should be considered to reduce additional pressure drop and design high performance engine cooling system. In this paper, pressure distribution inside water pump and pressure drop between inlet and outlet of water pump are investigated numerically to design plastic water pump for clean diesel engine application. And the inlet geometry of water pump was considered to analysis the effect of inlet water pipe geometry on pressure distribution around impeller blades and outlet pressure. The prediction results are compared with experimental data to validate and determine optimal operation condition without water pump cavitation. Major design parameters such as blade angle, volute geometry, system pressure, and coolant flow rate are considered to confirm applying possibility of plastic blades to the clean diesel engine.

Return Vane Installed in Multistage Centrifugal Pump

  • Miyano, Masafumi;Kanemoto, Toshiaki;Kawashima, Daisuke;Wada, Akihiro;Hara, Takashi;Sakoda, Kazuyuki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.57-63
    • /
    • 2008
  • To optimize the stationary components in the multistage centrifugal pump, the effects of the return vane profile on the performances of the multistage centrifugal pump were investigated experimentally, taking account of the inlet flow conditions for the next stage impeller. The return vane, whose trailing edge is set at the outer wall position of the annular channel downstream of the vane and which discharges the swirl-less flow, gives better pump performances. By equipping such return vane with the swirl stop set from the trailing edge to the main shaft position, the unstable head characteristics can be also suppressed successfully at the lower discharge. Taking the pump performances and the flow conditions into account, the impeller blade was modified so as to get the shock-free condition where the incidence angle is zero at the inlet.

An Experimental Study on the Performance of a Simultaneous Heating and Cooling Heat Pump in the Cooling-only and Cooling-main Operation Mode with the Variation of the Indoor Air Temperature (동시냉난방 열펌프 시스템의 냉방전용 및 냉방주체 운전모드에서의 실내기온 변화에 따른 성능특성에 관한 실험적 연구)

  • Ahn, Jae-Hwan;Joo, Young-Ju;Kang, Hoon;Chung, Hyun-Joon;Kim, Yong-Chan;Choi, Jong-Min
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2165-2170
    • /
    • 2008
  • The cooling load in winter season is significant in many commercial buildings and hotels because of the usage of office equipments and the high efficiency of wall insulation. Therefore, the development of a multi-heat pump which can cover heating and cooling simultaneously for each indoor unit is required. In this study, the characteristics and performance of a simultaneous heating and cooling heat pump in the cooling-only and cooling-main operating mode was investigated experimentally with a variation of indoor air dry bulb temperature which is from $21^{\circ}C$ to $35^{\circ}C$. EEV opening was adjusted from 20% to 24% during the tests. When the indoor air temperature varied, the performance in the cooling-only mode was more sensitive to the temperature than in the cooling-main mode. The total capacity and COP were increased by 53.8% and 48.1%, respectively, in the cooling-main, while those were increased by 19.6% and 19.3% in the cooling-only mode. The performance differences between the two operating modes became larger at lower temperatures, especially for the COP.

  • PDF