• Title/Summary/Keyword: Main cooling system

Search Result 302, Processing Time 0.03 seconds

Operating Mode of Thermally Activated Building System (TABS) for Residential Buildings According to their Cooling Load Profile (주거건물의 냉방 부하 패턴에 따른 구체축열시스템 운전 방안)

  • Park, Sang-Hoon;Yeo, Myoung-Souk;Yoo, Mi-Hye;Lee, Yu-Ji;Chung, Woong-June;Kim, Kwang-Woo
    • Journal of the Korean housing association
    • /
    • v.23 no.2
    • /
    • pp.99-106
    • /
    • 2012
  • Compared to Packaged Terminal Air Conditioning Systems, Radiant Cooling Systems have the advantage of energy saving and thermal comfort. Thermally Activated Building System (TABS) is one of the radiant heating and cooling systems. The main difference between TABS and other radiant systems lies in the usage of the time-lag effect of storing heat energy in the concrete. Current energy usage in summer time is concentrated within a specific time by using Packaged Terminal Air-Conditioner (PTAC). Due to the time-lag effect of TABS, energy usage can be distributed to other time zones. To maximize this effect, it is important to determine the appropriate operating mode, which for TABS is dependent upon the cooling load generated by the occupancy schedule. In this study, occupancy schedules are determined for various residential types. The operating modes of TABS for these residential types are estimated by using a dynamic computational simulation method. The results indicate that the operating modes of TABS can be determined by residential type and occupancy schedule. The load handled ratio by TABS is set up differently according to the cooling load profile obtained from residential type and occupancy schedule. By using TABS, energy consumption could be reduced by 20% compared to PTAC.

Study of Cooling Characteristics of 18650 Li-ion Cell Module with Different Types of Phase Change Materials (PCMs) (PCM 종류에 따른 18650 리튬-이온 셀 모듈의 냉각 특성 연구)

  • YU, SIWON;KIM, HAN-SANG
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.6
    • /
    • pp.622-629
    • /
    • 2020
  • The performance and cost of electric vehicles (EVs) are much influenced by the performance and service life of the Li-ion battery system. In particular, the cell performance and reliability of Li-ion battery packs are highly dependent on their operating temperature. Therefore, a novel battery thermal management is crucial for Li-ion batteries owing to heat dissipation effects on their performance. Among various types of battery thermal management systems (BTMS'), the phase change material (PCM) based BTMS is considered to be a promising cooling system in terms of guaranteeing the performance and reliability of Li-ion batteries. This work is mainly concerned with the basic research on PCM based BTMS. In this paper, a basic experimental study on PCM based battery cooling system was performed. The main purpose of the present study is to present a comparison of two PCM-based cooling systems (n-Eicosane and n-Docosane) of the unit 18650 battery module. To this end, the simplified PCM-based Li-ion battery module with two 18650 batteries was designed and fabricated. The thermal behavior (such as temperature rise of the battery pack) with various discharge rates (c-rate) was mainly investigated and compared for two types of battery systems employing PCM-based cooling. It is considered that the results obtained from this study provide good fundamental data on screening the appropriate PCMs for future research on PCM based BTMS for EV applications.

Numerical Analysis on development of the Cooling System for E-Scooter Battery Pack (전동스쿠터용 배터리팩 냉각시스템 개발을 위한 수치해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.30-36
    • /
    • 2016
  • The battery pack which is a main component of E-scooter needs the cooling system because it is the matter of battery safety in spite of the incresing of charge efficiency due to decress the internal resistence in the condition of high temperature. The purpose of this study is to analyse the effects of cooling methods which is the control of air's inlet and outlet operating timing. When each battery had large temperature deviation in the battery pack, the difference of battery's performance and efficiency were appeared. In this study, the cooling performance of battery pack has been improved by changing the operation timing of inlet and outlet fan, it improved the performance and efficiency of battery. The numerical analysis using a commercial code ANSYS CFX version 17.0 were used for the study.

Parametric Study for Conductor Design of KSTAR PF Coils

  • Yoon, Cheon-Seog;Qiuliang Wang;Kim, Myungkyu;Kim, Keeman;Lee, Dong-Ryul
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.227-234
    • /
    • 2002
  • Large superconducting magnets such as ITER (International Thermonuclear Experimental Research) or KSTAR (Korean Superconducting Tokamak Advanced Research) magnet system adopted a cable-in-conduit conductor (CICC) using a forced-flow cooling system. Main optimization criteria for the conductor design of superconducting magnet system are stability margin and CICC cooling requirements. A zero-dimensional method is applied for the calculation of stability and the conductor optimization. In order to increase conductor performance, three different strands, ITER HP-I and HP-II, and KSTAR HP-Ⅲ, are tested. The strand characteristics of KSTAR HP-Ⅲ are measured in the Samsung's PPMS and Jc measurement system, and applied for this study. Also, the strand diameters, 0.81 mm and 0.78 mm are considered for this study, due to design change. Based on this result, the proposed configuration of CICC has been fabricated.

Performance Analysis of R744(Carbon Dioxide) for Transcritical Refrigeration System (R744용 초임계 냉동사이클의 성능 분석)

  • Roh, Geun-Sang;Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.32-38
    • /
    • 2009
  • In this paper, cycle performance analysis for cooling capacity, compression work and COP of R744($CO_2$) transcritical vapor compression refrigeration system is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include superheating degree, outlet temperature of gas cooler and evaporating temperature in the R744 vapor compression cycle. The main results were summarized as follows : The cooling capacity of R744 increases with superheating degree, but decreases with the increasing evaporating temperature and outlet temperature of gas cooler. The compression work increases with superheating degree and cooling pressure of R744, but decreases with the increasing evaporating temperature. And, The COP increases with outlet temperature and evaporating temperature of R744 gas cooler, but decreases with the increasing superheating degree. Therefore, superheating degree, outlet temperature and evaporating temperature of R744 vapor compression refrigeration system have an effect on the cooling capacity, compression work and COP of this system. With a thorough grasp of these effect, it is necessary to design the compression refrigeration cycle using R744.

Performance Characteristics of Flooded Type Evaporator for Seawater Cooling System with Heat Source Temperature of Mid-year (중간기 열원수 온도에 따른 만액식 해수냉각시스템의 성능 특성)

  • Yoon, Jung-In;Son, Chang-Hyo;Lee, Jeong-Mok;Kang, In-Ho
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.64-69
    • /
    • 2017
  • The purpose of this study is to investigate the performance characteristics of seawater cooling system for a fishing vessel. The circulation amount of refrigerant, condensation capacity, evaporation capacity, compression work and coefficient of performance(COP) were analyzed as the heat source temperature changed. The experimental setup consisted of an open-type compressor, a shell&tube type condenser, an evaporator and an expansion valve. The heat source was controlled by a constant temperature chamber. The main results of this study are summarized as follows. The condensation capacity increased with increasing heat source temperature, and it was confirmed that the effect of circulating amount of refrigerant was dominant. The amount of heat for vaporization was almost constant even though the temperature of the heat source increased. On the other hand, the compression power was increased. This is because the compression ratio increases as the condensation pressure, the enthalpy difference between inlet and outlet, the amount of circulating refrigerant increases. The performance coefficient of this system showed a tendency decreasing with increasing heat source temperature. Therefore, the basic data of the seawater cooling system for the maintenance of the catch line of the shore fishing boats was acquired through this study, and it is considered that it will be sufficient for the actual design.

Transient cooling experiments with a cooper block in a subcooled flow boiling system (과냉비등류에 있어서 동블록을 이용한 과도적 냉각실험)

  • 정대인;김경근;김명환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.72-79
    • /
    • 1987
  • When the wall temperature is very high, a stable vapor film covers the heat transfer surface. The vapor film creates a strong thermal resistance when heat is transferred to the liquid though it. This phenomenon, called "film boiling" is very important in the heat treatment of metals, the design of cryogenic heat exchangers, and the emergency cooling of nuclear reactors. In the practical engineering problems of the transient cooling process of a high temperature wall, the wall temperature history, the variation of the heat transfer coefficients, and the wall superheat at the rewetting points, are the main areas of concern. These three areas are influenced in a complex fashion such factors as the initial wall temperature, the physical properties of both the wall and the coolant, the fluid temperature, and the flow state. Therefore many kinds of specialized experiments are necessary in the creation of precise thermal design. The object of this study is to investigate the heat transfer characteristics in the transient cooling process of a high temperature wall. The slow transient cooling experiment was carried out with a copper block of high thermal capacity. The block was 240 mm high and 79 mm O.D.. The coolant flowed throuogh the center of a 10 mm diameter channel in the copper block. In the copper block, three sheathed thermocouples were placed in a line perpendicular to the flow. These thermocouples were used to take measurements of the temperature histories of the copper block.

  • PDF

The Novel Configuration for Building Energy System Including Build ins Microgrid (빌딩 마이크로그리드가 포함된 새로운 빌딩에너지 시스템 구축방향에 관한 연구)

  • Hong, Won-Pyo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.235-240
    • /
    • 2008
  • The recent development of efficient thermal prime movers for distributed generation id changing the focus of the production of electricity from large centralized power plants to local generation units scattered over the territory. The scientific communality is addressing the analysis and planning of the distributed energy resources(der) with wide spread approaches, taking into account technical, environmental, economical and social issues. The coupling of cogeneration system to absorption/electric chillers or heat pumps as well as the interactions with renewable sources, allow for setting up multi-generation systems for building cooling heating and power(BCHP) systems of different energy vectors such as electricity, heat(at different enthalpy levels), cooling power, hydrogen, various chemical substances and so forth. Adoption of the composite multi-generation systems may lead to significant benefits in term of higher efficiency, reduced $CO_2$ emissions and enhanced economy. This paper outlines the main aspects of the BCHP system framework, illistrating its characteristics and summarizing the relevant distributed multi-generation structures.

  • PDF

Technology Research on Gas Turbine Combustor Utilizing Melt-Growth Composite Ceramics

  • Konoshita, Yasuhiro;Hagari, Tomoko;Matsumotoi, Kiyoshi;Ogata, Hideki;Ishida, Katsuhiko
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.854-860
    • /
    • 2004
  • "Research and Development of Melt-Growth Composite (MGC) Ultra High Efficiency Gas Turbine System Technology" program has been started in JFY2001. The main objective of the program is to establish basic component technologies to apply MGC material to an efficient gas turbine system successfully. It is known that MGC material maintains its mechanical strength at room temperature up to about 2000 K, which is ideal for the high temperature gas turbine. The purposes of the present study are to develop the cooling structure of the gas turbine combustor liner where MGC material is applied as the heat shield panel, also to develop the low NOx combustion system for a 1970 K (1700 deg.C) class gas turbine combustor. To start with, basic heat transfer characteristics were investigated by one-dimensional calculation and heat transfer experiment for the cooling structure. Axially staged configuration and fuel preparation were investigated by CFD calculation and experiments for the low NOx combustor.

  • PDF

Development of Pocket Insertion style Magnetic Curer that Apply $2^{loop}\;3^{pulsed}$ Variable Magnetic type Probe for Urinary Treatment

  • Kim, Whi-Young
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.1
    • /
    • pp.73-79
    • /
    • 2008
  • Result that study magnet nerve curer for treatment induced current generation and current of ion for development in main point incontinence, prostate, sphincter, nervous system, rigidity, headache, retrogression arthritis, ligament damage, Rheumatism arthritis, peripheral nerve etc., can classify by 4. Embodied do first, full bridge magnet occurrence chapter, and communication with PC is available, confirmed various action loops an experiment. Could confirm correct treatment probe second, woman and man disease person. Third, derived so that healing may be possible naturally by addition of apron form according to disease. Because composition of finally, treatment probe composes by act of negative plate form, manufacture is easy and cooling designed for easy direction. More superior result of cooling appeared than existing in incidental and ingredients, cooling efficiency, composition, complexity, convenience etc. that expense and composition manufacture very straightforwardly and experimental by 2 - Tank ways.