• Title/Summary/Keyword: Main converter

Search Result 538, Processing Time 0.035 seconds

A Forward Converter with a Capacitive Output Filter for Isolated LED Lighting Applications (절연형 LED 조명기기를 위한 커패시티브 출력 여과기를 가진 포워드 전력 변환기)

  • Kim, Myungbok
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.394-395
    • /
    • 2011
  • In order to increase the power conversion efficiency and improve the power factor, a modified forward converter is proposed, which adopts a capacitive output filter instead of the inductive output filter of the conventional forward converter. Therefore, the proposed converter has wide input voltage range in opposite to that of the conventional forward converters. Moreover, the proposed converter uses the critical conduction mode for automatic current shaping to improve the power factor. As a result, the proposed converter can achieve quasi-resonant zero-voltage-switching, which can minimize the switching loss of main MOSFET. In addition, the operational principle of the proposed converter is analyzed and the characteristic of the proposed converter is investigated in this paper. To validate the effectiveness of the proposed converter, a prototype of 13W is implemented and the experimental results are discussed in more detail.

  • PDF

An Improvement Parallel to the Efficiency of Boost Converter for Power Factor Correction (PFC용 부스트 컨버터의 병렬화에 의한 효율 개선)

  • 전내석;장수형;전일영;박영산;안병원;이성근;김윤식
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.120-124
    • /
    • 2001
  • A new technique for improving the efficiency of single-phase high-frequency boost converter is proposed. This converter includes an additional low-frequency boost converter which is connected to the main high-frequency switching device in parallel. The additional converter is controlled at lower frequency. Most of the current flows in the low-frequency switch and so, high-frequency switching loss is greatly reduced accordingly Both switching device are controlled by a simple method; each controller consists of a one-shot multivibrator, a comparator and an AND gate. The converter works cooperatively in high efficiency and acts as if it were a conventional high-frequency boost converter with one switching device. The proposed method is verified by simulation. This paper describes the converter configuration and design, and discusses the steady-state performance concerning the switching loss reduction and efficiency improvement.

  • PDF

A winding design of Tap Level Converter (Tap Level 제어 전력 변환기의 권선설계)

  • Chun J.H.;Lee H.W.
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.53-55
    • /
    • 2006
  • In this paper discusses winding methode of single phase AC-DC reversible power converter The reversible power converter driven by multi Tap winding at both side switching control. It has a advantage that simple drive of main switching device. and obtain load current of good quality without filter circuit and free from noise or isolation for lower switching frequency. In this research, study on current type converter and inverter circuit that consist for possibility of AC-DC/DC-AC multi-level reversible converter.

  • PDF

A New ZVZCS Converter Applicable to Majority and Minority Carrier Devices (다수 및 소수캐리어 소자에 적용 가능한 영전압영전류 스위칭 컨버터)

  • Ahn Hee-Wook;Kim Hack-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.518-525
    • /
    • 2005
  • The paper proposes a novel ZVZCS PWM converter. It enables the main switch to be turned on/off with both zero voltage and zero current, the auxiliary switch to be turned on/off with ZCS, the rectifier diode to be turned on/off with ZVS. Moreover, this proposed soft switching technique is suitable for not only minority carrier device but also majority carrier semiconductor device. Since auxiliary resonant circuit of the proposed boost converter is placed out of the main power path, therefore, there are no voltage and current stresses on the main switch and diode. The operation of the proposed boost converter is explained and analyzed theoretical and experimentally, from a prototype operating at 100KHz.

A New Energy Recovery Snubber for Boost Converter (부스트 컨버터용 새로운 에너지재생 스너버)

  • 김만고;김진환
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.124-130
    • /
    • 1997
  • The main switch of high-frequency boost converter may be failed because the high switching current or voltage can damage this switch. The high switching stress can be reduced by snubber circuit. In this paper, a new passive snubber circuit which can recover trapped snubber energy without added control is proposed for boost converter. The control of boost converter with proposed snubber is the same as the conventional one. In addition, the energy recovery circuit can be implemented with a few passive components. The analysis for proposed circuit is presented, and the validity of the circuit is verified through simulation and experiment.

  • PDF

A new AC/DC/AC converter using Soft-Switched-Inductor Module (Soft-Switched-Inductor Module을 사용한 새로운 방식의 AC/DC/AC converter)

  • Jeon, S.J.;Jeong, D.L.;Lee, B.W.;Cho, G.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.559-561
    • /
    • 1994
  • In this paper a new AC/DC/AC converter in which Soft-Switched-Inductor Module is used, is proposed. This new converter adopts ZVS(Zero-Voltage-Switching) for main switches. Therefore the switching loss is minimized and high frequency operation is possible. Operations principles, short analyses and computer simulation results are presented.

  • PDF

An Integrated Single-Stage Zero Current Switched Quasi-Resonant Power Factor Correction Converter with Active Clamp Circuit (능동 클램프 회로를 적용한 단상 ZCS 공진형 역률개선 컨버터)

  • 이준영;문건우;고관본;윤명중
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.626-630
    • /
    • 1999
  • A new integrated single-stage zero current switched(ZCS) quasi-resonant converter (QRC) for the power factor correction(PFC) converter is introduced in this paper. The power factor correction can be achieved by the discontinuous conduction mode(DCM) operation of an input current. The proposed converter has the characteristics of the good power factor, low line current harmonics, and tight output regulation. Furthermore, the ringing effect due to the output capacitance of the main switch can be eliminated by use of active clamp circuit.

  • PDF

Characteristic of Boost input type active clamp DC-DC converter (Boost 입력형 능동클램프 DC-DC 컨버터의 동작특성)

  • Ceong, Cin-Beom;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.301-303
    • /
    • 2001
  • This paper proposes the boost input type active clamp DC-DC converter featuring the high efficiency and improved EMI characteristics. The main characteristic of the converter is to operate with the non-pulsating input and output currents. Besides, it has the zero-voltage switching (ZVS) and low voltage stress characteristics. For the proposed converter, the detailed operation principles and the simulation results are presented.

  • PDF

The Experimental Consideration of ZVT-PWM AC-DC Converter using Active Auxiliary Resonant Snubber (액티브 보조 공진 스너버를 이용한 ZVT-PWM AC-DC 컨버터의 실험적 고찰)

  • 서기영;문상필;김주용;박진민
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.2
    • /
    • pp.75-82
    • /
    • 2004
  • Zero Voltage Transition Pulse Width Modulation (ZVT-PWM) converter with active snubber circuit was proposed on this paper. The converter that has been proposed snubber circuit can be operated at the condition of light load range, and this converter is turned on and off near by Zero Voltage Switching (ZVS) or Zero Current Switching (ZCS). If the stress of voltage and current are not occurred at the main switch and main diode, we subjected the allowed level of voltage and current on the auxiliary switch and auxiliary diodes. By proposed 750[W], 80[KHz] PWM boost converter to apply soft switching on the power of total output, the loss of main switch to compare with hard switching was reduced about 27[%], and the loss of total circuit was reduced about 36[%]. The total efficiency was increased about 6[%] to compare with general converter.

Power Factor with Single Power Stage AC/DC Converter Operated in Active-Clamp Mode (능동 클램프 모드로 동작하는 단일 전력 AC/DC 컨버터에 의한 역률개선)

  • Yoon, Shin-Yong;Baek, Hyun-Soo;Kim, Yong;Kim, Cherl-Jin;Eo, Chang-Jin
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.8
    • /
    • pp.392-401
    • /
    • 2001
  • This paper presents the single-stage high power factor AC to DC converter operated in active-clamp mode. The proposed converter is added active-clamping circuit to boost-flyback single-stage power factor corrected power supply. The active-clamping circuit limits voltage spikes, recycles the energy trapped in the leakage inductance, and provides a mechanism for achieving soft switching of the electronic switches to reduce the switching loss. The auxiliary switch of active-clamping circuit uses the same control and driver circuit as the main switch to reduce the additional cost and size. To verify the performance of the proposed converter, a 100W converter has been designed. The proposed converter gives good power factor correction, low line current harmonic distortions, and tight output voltage regulation, as used unity power factor.

  • PDF