• Title/Summary/Keyword: Main cargo pump

Search Result 5, Processing Time 0.024 seconds

An Introduction of Pumps Installed for Marine Use (선박용 펌프의 소개)

  • Lee, Sang-Il;Lee, Young-Ho;Kim, You-Taek
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.363-366
    • /
    • 2006
  • Various kinds of ships(Cargo ship, Passenger ship, Training ship, Special ship etc.) are operated to transport cargo or passengers at sea in the world. Most of the important auxiliary machinery which is installed are fluid machinery in those ships. A large percentage of fluid machinery is pumps which are classified turbo and non-turbo type. While much previous research has focused on pumps for shore use, very little is known about ship's pump. In order to develop an understanding of ship's pump, we introduce common pumps used in every ship and special pumps based on ship's type. This exploratory study lays the groundwork for further investigation of ship's pumps

  • PDF

Effects of Resistivity Variation in a Very Low Temperature on the Characteristics of Induction Motors

  • Kim, Beom Jin;Kim, Jin Sung;Park, Gwan Soo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.45-50
    • /
    • 2013
  • This paper presents design of induction motor in very low temperature for LNG main cargo pump and comparison of two motors. One is the motor for using in room temperature and another is the motor for using very low temperature. This paper designs with Equivalent circuit Method and uses Finite Element Method to analysis. The motor for very low temperature considers variation of coil resistivity due to temperature change and compare torque characteristic with the motor for room temperature. Design element of motor for very low temperature considers resistivity variation following temperature change on going through this paper. The result shows that two types of motors are almost same torque curve characteristic even though they are not the same environment.

A Study on the Development of 34kW class Cryogenic Induction Motor using LNG Pump (34kW급 LNG펌프용 극저온 유도전동기 개발에 관한 연구)

  • Lee, Ki-Wook;Jeong, Dong-Wook;Park, Gwan-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.999-1004
    • /
    • 2015
  • In this paper, the study presents the development of 34kW class cryogenic induction motor using LNG Pump. Operating temperature of an induction motor using LNG Main Cargo Pump is at −163℃. Due to variation of the resistivity, these motor have different torque characteristics. So, it should design to considering the resistivity change. The most important consideration of induction machine operating is cryogenic temperature. If the temperature rise, LNG is vaporized. it is a major cause of pump failure. There are several causes of heat source like coreloss, hysterisysloss, copperloss. This paper analyzed the thermal distribution of the induction motor at rated speed operation.

A Study on the Design of 34kW Cryogenic Induction Motor for LNG Spray Pump (34kW급 LNG Spray펌프용 극저온 유도전동기 설계에 관한 연구)

  • Jeong, Dong-Wook;Lee, Ki-Wook;Ryu, Jae-Ho;Park, Gwan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.918-919
    • /
    • 2015
  • Because of environmental regulations in emissions control area, the demand for ships to use LNG as fuel is increasing. Orders for domestic shipbuilders to produce LNG carriers are steadily increasing. However, major appliances such as spray pump, main cargo pump and others have been relied on imports. Therefore, development of pump motor using at cryogenic temperature is necessary. Operating temperature of an induction motor is at $-163^{\circ}C$. At this low temperature, the resistivity of a motor coil is quite different from normal ones, and so does the torque characteristics of motor. This paper presents a designing method of a cryogenic induction motor for LNG pump. The variation of resistivity of motor coil is considered in the design process. The heat source such as core-loss, hysteresis-loss and copper-loss are analyzed to prevent the LNG evaporation which may cause the motor failure.

  • PDF

A Study on Bilge Pumping Performance of 24,000TEU class Container Ship (24,000TEU급 컨테이너선박의 빌지 펌핑 성능에 대한 고찰)

  • Seo, Jang-Won;Yun, Jeong-In;Lee, Kyoung-Woo;Lee, Won-Ju;Park, Hoyong;Choe, Su-Jeong;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1100-1109
    • /
    • 2022
  • Herein, a case study was conducted on the bilge pumping performance of a 24,000TEU class container ship with an overall length of 400m. Although the bilge system of the 24,000TEU class container ship was designed in accordance with the rule requirements of the Classification Society, the bilge system did not satisfy the 2 m/s requirements of SOLAS Reg.II-1/35-1 under the rated flow rate and maximum flow rate conditions of the bilge pump installed in the ship. In particular, assumptions were made that No.1 ~ No.4 cargo holds were flooded and filled entirely by sea water and the evaluation of bilge pumping performance had been performed for No.1 ~ No.4 cargo holds. According to the evaulation results of the, the mean water velocity at the main bilge pipe for No.2, No.3, and No.4 cargo holds did not meet the 2 m/s criterion. To resolve this problem, in this study, the branch bilge pipe in each cargo hold was changed from 150A to 200A and the mean water velocity at the main bilge pipe for No.2, No.3, and No.4 was calculated as 2.479m/s, 2.476m/s, and 2.459m/s, respectively.