• Title/Summary/Keyword: Main bearing

Search Result 599, Processing Time 0.032 seconds

Analytical Study to Determine the Dynamic Property of Control Equipment Room using LRB (납-고무베어링을 적용한 제어장치의 동적평가를 위한 해석적 연구)

  • 김우범;김대곤;이경진;박병구
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.473-480
    • /
    • 2003
  • In these days, The base isolation system is often used improve the seismic capacity of the structure Instead of conventional techniques of strengthening the structural members. The purpose of this study is to evaluate dynamic property evaluation of control equipment using Lead Rubber Bearing. In this study, analysis numerical was performed to determine the optimal dynamic property of lead rubber bearing and damper which minimize the response of base from in main control room. Also the analytical results was composed with the test results peformed in previous study

  • PDF

Application of Adaptive Line Enhancer for Detection of Ball Bearing Defects (볼 베어링의 결함검출을 위한 Adaptive Line Enhancer의 적용)

  • Kim Young Tae;Choi Man Yong;Kim Ki Bok;Park Hae Won;Park Jeong Hak;Kim Jong Ock;Lyou Jun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.2
    • /
    • pp.96-103
    • /
    • 2005
  • The early detection of the bearing defects in rotating machinery is very important since the critical failure of bearing causes a machinery shutdown. However it is not easy to detect the vibration signal caused by the initial defects of bearing because of the high level of random noise. A signal processing technique, called the adaptive line enhancer(ALE) as one of adaptive filter, is used in this study. This technique is to eliminate random noise with little a prior knowledge of the noise and signal characteristics. Also we propose the optimal methods fir selecting the three main ALE parameters such as correlation length filter order and adaptation constant. Vibration signals f3r three abnormal bearings, including inner and outer raceways and ball defects, were acquired by Anderon(angular derivative of radius on) meter. The experimental results showed that ALE is very useful f3r detecting the bearing defective signals masked by random noise.

A Study on the Structural Stiffness and Coulomb Damping of Air Foil Bearing Considering the Interaction among Bumps (범프들의 상호작용을 고려한 공기 포일 베어링의 구조적 강성 및 쿨롱 감쇠에 대한 연구)

  • Lee, Yong-Bok;Park, Dong-Jin;Kim, Chang-Ho
    • Tribology and Lubricants
    • /
    • v.22 no.5
    • /
    • pp.252-259
    • /
    • 2006
  • Air foil bearing supports the rotating journal using hydrodynamic force generated at thin air film. The bearing performances, stiffness, damping coefficient and load capacity, depend on the rotating speed and the performance of the elastic foundation, bump foil. The main focus of this study is to decide the dynamic performance of corrugated bump foil, structural stiffness and Coulomb damping caused by friction between bump foil and top foil/bump foil and housing. Structural stiffness is determined by the bump shape (bump height, pitch and bump thickness), dry-friction, and interacting force filed up to fixed end. So, the change of the characteristics was considered as the parameters change. The air foil bearing specification for analysis follows the general size; diameter 38.1 mm and length 38.1 mm (L/D=1.0). The results show that the stiffness at the fixed end is more than the stiffness at the free end, Coulomb damping is more at the fixed end due to the small displacement, and two dynamic characteristics are dependent on each other.

Determination of Optimal Support for Cable-stayed Bridge Designs (사장교의 설계를 위한 최적 지지조건 결정)

  • An, Zu-Og;Yoon, Young-Man
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.4 s.11
    • /
    • pp.103-109
    • /
    • 2003
  • A numerical analysis of cable-stayed bridge is conducted to determine optimum longitudinal modulus of elasticity which represents the boundary condition between the tower and main girder. The effect of longitudinal modulus of elasticity is investigated for different loading condition (live load, wind load, seismic load), respectively. There are significant changes in the member forces as variations of longitudinal modulus of elasticity, such as, $k_h$=e=100tonf/m/bearing (live load), $k_h$=e=1000tonf/m/bearing (seismic load), However, the wind loads do not affect member forces. The optimum longitudinal modulus of elasticity is determined from considering minimum member forces in the numerical analysis results.

Numerical Design Method for Water-Lubricated Hybrid Sliding Bearings

  • Feng, Liu;Bin, Lin;Xiaofeng, Zhang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.47-50
    • /
    • 2008
  • This paper presents a new water-lubricated hybrid sliding bearing for a high speed and high accuracy main shaft system, along with the numerical method used for its design. The porous material for the restrictor and the restriction parameter were chosen based on the special requirements of the water-lubricated bearing. Subsequent numerical calculations give the load capacity, stiffness, and friction power of different forms of water-lubricated bearings. The pressure distribution of the water film in a 6-cavity bearing is shown, based on the results of the numerical calculations. A comparison of oil-lubricated and water-lubricated bearings shows that the latter benefits more from improved processing precision and efficiency. An analysis of the stiffness and friction power results shows that 6-cavity bearings are the preferred type, due their greater stiffness and lower friction power. The average elevated temperature was calculated and found to be satisfactory. The relevant parameters of the porous restrictor were determined by calculating the restriction rate. All these results indicate that this design for a water-lubricated bearing meets specifications for high speed and high accuracy.

Study on the Correlation of Leakage by the Variation of Inlet Pressure and Clearance in Hydrostatic Bearing (정압베어링에서 입구압력 및 틈새간격 변화에 따른 누설량의 상관관계에 관한 연구)

  • Yun, Chung-Kug;Bae, Kang-Youl;Jeoun, Jin-Seong
    • Journal of Power System Engineering
    • /
    • v.20 no.6
    • /
    • pp.34-39
    • /
    • 2016
  • This paper is the numerical study on the correlation of leakage by the variation of inlet pressure and clearance in hydrostatic bearing. The main goal of this study is to apply to the design of hydro system the results that the pocket pressure and the leakage rate according to the inlet pressure and the clearance between piston and cylinder tube. Because the hydrostatic bearing in hydraulic cylinder has the narrow rectangular channel between piston and cylinder tube, so to verify the numerical scheme, it has been compared with the experimental results of Brackbill and Kandlikar. The pressure data of numerical results inside narrow rectangular channel correlate was showed a good agreement with experimental results, thereby the numerical scheme was applied to the real model that is a hydraulic cylinder with the hydrostatic bearing. In conclusion, the pressure differences between inlet and pocket were shown within 3%. Leakage rates were showed rapidly increased pattern between about 4.5 and 6.7 times because the section area to calculate the leakage rates were proportioned to a square of diameter. The correlation equation was calculated among the inlet pressure, the clearance and the leakage rate by using the linear regression.

In Vivo Kinematics of a Mobile-bearing Total Knee Prosthesis (이동베어링형 인공무릎전치환관절의 생체내의 운동)

  • Lee, Yeon-Soo;Park, Sang-Jin;Song, Eun-Kyoo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1473-1474
    • /
    • 2008
  • In the total knee arthroplasty (TKA), kinematic benefic of a mobile-bearing total knee prosthesis is still arguing. Main reasons for implant failure are loosening and polyethylene wear and should be solved with new designs with mob ile bearings. The kinematics of the knee prosthesis also affects the implant failure. Recently, a second generation of p rostheses with a mobile-bearing was developed. The current study aimed to assess the kinematic path of the 2nd generation mobile knee prosthesis compared to the normal knees. Using 3D/2D registration method, CT-derived 3D knee models were fitted to sequential 2D X-ray images during knee flexion. 3D kinematics of the femur and the tibia were analyzed. The 2nd generation mobile-bearing TKA prosthesis (e.motion, Aesculap, Germany) knees showed less external rotation and knee flexion range compared to the normal knee, but the trend of external rotation was similar each other.

  • PDF

Design of Performance Evaluation System and Measurement of Dynamic Behavior for Fluid Hydrodynamic Bearing in HDD (HDD용 유체동압베어링 성능평가 시스템 설계 및 동적거동 측정)

  • Kang, Jung-Woo;Lee, Tae-Whi;Lee, Hyoung-Wook;Park, Sung-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.10
    • /
    • pp.1159-1165
    • /
    • 2011
  • The recording density of HDD is increasing in ratio of 100% each year. Because the increasing of recording density requires the feature of high rotation, fixation and low-noise, fluid hydrodynamic bearing(FDB) has been paid attention to overcome a limitation in ball bearing. Most of researches related to improving performance of FDB have been studied in Japan which has 80% more market share of HDD spindle motor assembly. Main subject of studies are about for the design of the groove shape, manufacturing process of fluid dynamic bearing, performance evaluation and measurement. In HDD, non-repeatable runout(NRRO) is most important parameter which determines the performance of HDD spindle system because NRRO is unpredictable that cannot be compensated in head/slider servo system. In this study, performance evaluation system can measure dynamic behaviors were designed and methodology for calculating imbalance, RRO, and NRRO were proposed.

A Study on the Structural Stiffness and Coulomb Damping of Air Foil Bearing Considering the Interaction among Bumps (범프들의 상호작용을 고려한 공기 포일 베어링의 구조적 강성 및 쿨롱 감쇠에 대한 연구)

  • Park, Dong-Jin;Kim, Chang-Ho;Lee, Sung-Chul;Lee, Yong-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1135-1141
    • /
    • 2006
  • Air foil bearing supports the rotating journal using hydrodynamic force generated at thin air film. The bearing performance, stiffness, damping coefficient and load capacity, depends on the rotating speed and the performance of the elastic foundation, bump foil. The main focus of this study is to decide the dynamic performance of corrugated bump foil, structural stiffness and Coulomb damping caused by friction between bump foil and top foil/bump foil and housing. Structural stiffness is determined by the bump shape (bump height, pitch and bump thickness), dry-friction, and interacting force filed up to fixed end. So, the change of the characteristics was considered as the parameters change. The air foil bearing specification for analysis follows the general size; diameter 38.1 mm and length 38.1mm (L/D=1.0). The results show that the stiffness at the fixed end is more than the stiffness at the free end, Coulomb damping is more at the fixed end due to the small displacement, and two dynamic characteristics are dependent on each other.

  • PDF

Experimental and finite element analyses of footings of varying shapes on sand

  • Anil, Ozgur;Akbas, S. Oguzhan;Babagiray, Salih;Gel, A. Cem;Durucan, Cengizhan
    • Geomechanics and Engineering
    • /
    • v.12 no.2
    • /
    • pp.223-238
    • /
    • 2017
  • In this study, bearing capacities and settlement profiles of six irregularly shaped footings located on sand have been experimentally and analytically investigated under the effect of axial loading. The main variable considered in the study was the geometry of the footings. The axial loads were applied from the center of gravities of the test specimens. Consequently, the effect of footing shape on the variation of the bearing capacities and settlement profiles have been investigated in this paper. The three dimensional finite element analyses of the test specimens were conducted using the PLAXIS 3D software. The finite element model results are in acceptable agreement with the results obtained using experimental investigation. In addition, the usability of the finite element technique by design engineers to determine the bearing capacities and settlement profiles of irregularly shaped footings was investigated. From the results of the study, it was observed that the geometric properties of the footings significantly influenced the variation of the bearing capacities and settlement profiles.