NFTs, which guarantee ownership of digital files using blockchain technology, are the new field for the content industry. The NFT provided new opportunities for content creators to trade digital contents without going through mediation freely. Additionally, collectors and investors can safely and easily own their works without the threat of illegal copies. However, since only a limited number of content creators are participating in the NFT market, there needs to be an influx of various content creators and a process of popularization for this market to grow and develop into the main stage. Furthermore, research on NFT has been limited, and understanding the drivers of creators choosing to participate in NFT is insufficient. Thus, this study aims to identify the factors affecting content creators participating in NFT by applying a mixed-methods approach and presenting practical implications. Using topic modeling and in-depth interviews, this study derives the positive and negative factors and suggests strategies to activate content creators' participation in the NFT market. Through this, we can guide that management implication to reduce the risks and costs of participating in NFTs is needed to encourage the participation of creators. It will also provide insight into ways to develop the NFT content market.
문장추상화(Sentence Abstraction)는 문장의 의사전달 기능이 보존된 단순화이다. 이는 문장교열(Sentence Revision)과 개념추상화(Concept Abstraction)를 동시에 가능하게 한다. 문장교열은 사람이 생각한 바와 문장으로 표현된 의미의 차이를 해결하는 방법이다. 개념추상화는 개념들의 공통된 요소로부터 얻은 보편적인 관념을 표현하는 것이다. 문장추상화는 문장의 주요구성성분들을 선별해 내고, 이들의 의미적인 정보를 파악하여 상위개념을 표현함으로써 문장교열과 개념추상화를 가능하게 한다. 본 논문에서는 문장추상화를 위한 구문분석기 LGPI+와, 온톨러지 OfN을 구체화하였다. 문장추상기 SABOT는 LGPI+와 OfN을 활용하며, 구문분석 결과를 처리하여 문장에서 추상화 할 후보난어를 선택한다. 문장추상화를 활용한 원문이해 시스템으로 23개 이야기의 58개 문단에 대해 중요 문장에 대한 문장재현율과 선별된 문장들의 주제관련성을 확인해 보았다. 실험결과, 문장재현율은 54~72%의 범위이었고, 주제관련성은 76~86% 정도의 비율로 나타났다. 이를 유사 시스템과 비교해 보았을 때, 약 10~20% 정도의 성능향상을 보인다. 본 논문에서는 문장추상화를 활용하여 글의 화제문을 효율적으로 선택할 수 있는 문장교열과 원문의 이해심도를 보다 더 깊게 할 수 있는 개념추상화가 가능함을 확인하였다.
본 연구는 국내외 사서 채용 동향을 분석하기 위해 수행되었다. 연구 대상으로 국내데이터는 인터넷 포털 사이트인 "사서e마을"에 게시된 사서 채용 공고를 총 489개를 수집하였고, 해외데이터는 "ALAJobList"에서 6,600개의 자료를 수집하였다. 기간은 2020년 1월부터 2022년 8월까지이며 수집된 데이터를 대상으로 지역 분포도 분석, 빈도 분석, 토픽모델링을 수행하였다. 연구 결과, 채용 공고의 지역분포도는 국내데이터에서 서울이 280건으로 가장 많았으며, 해외데이터는 캘리포니아(California)가 662건으로 상위로 도출되었다. 빈도분석 결과, 국내데이터의 담당업무에서는 '관리' 23.42% 키워드가 높게 나왔고, 자격요건은 '자격증' 16.61%이 가장 많은 비율을 차지했다. 해외데이터의 담당업무에서는 'LibraryService' 8.72% 비율이 높게 나왔으며, 자격요건은 'CommunicationSkills' 10.13% 키워드가 가장 높은 순위에 위치함을 확인했다. 토픽모델링에서는 국내외 담당업무, 자격요건으로 나눠 총 4가지의 영역을 살펴보았다. 분석 결과, 국내외 채용 공고에서 도출된 사서의 담당업무 및 자격요건이 미국도서관협회(ALA) 및 한국도서관협회 등 주요 도서관 관련 협회에서 제시한 핵심 역량과 연관이 있음을 확인하였다.
International Journal of Aeronautical and Space Sciences
/
제17권4호
/
pp.535-550
/
2016
Securing the safety and the reliability of liquid-propellant rocket engines (LREs) for space vehicles is indispensable as engines consist of many complex components and operate under extremely high energy-dense conditions. Thus, health monitoring has become a mandatory requirement, especially for the reusable LREs that are currently being developed. In this context, a dynamic simulation program based on MATLAB/Simulink was developed in the current research on the Space Shuttle Main Engine (SSME), a partly reusable engine. Then, a series of fault simulations using this program was conducted: at a steady state operating condition (104% Rated Propulsion Level), various simulated fault conditions were artificially injected into the simulation models for the five major valves, the pumps, and the turbines of the SSME. The consequent effects due to each fault were analyzed based on the time responses of the major parameters of the engine. It is believed that this research topic is an essential pre-step for the development of fault detection and diagnosis algorithms for reusable engines in the future.
이 연구의 목적은 브라운의 주제분류법 초판을 분석하여 오늘의 분류법 연구에 대한 시사점을 파악하는 것이다. 이를 위해 1906년에 발표한 주제분류법 초판을 분석 대상으로 삼았다. 분석 결과는 다음과 같다. 첫째, 분류체계의 구성에서 주제분류법의 주류는 크게 11가지로 구분되며, 각 주류는 000에서 999로 세분되어 열거식으로 나열되었다. 둘째, 분류기호 합성 방법은 크게 3가지가 있다. 셋째, 새로운 주제 처리 방법으로 본표에 없는 새로운 주제가 나타나면 적절한 위치에 새로운 분류기호를 삽입할 수 있는 유연성이 있었다. 분류법 연구에 대한 시사점은 크게 네 가지로 구분할 수 있다. 첫째, 이전의 분류법에는 없었던 혁신적인 방법인 복합 주제에 대한 분류기호 합성 방법을 제시하였다. 둘째, 패싯을 지원하는 보조표 운영을 통하여 주제를 다양한 측면에서 설명하였다. 셋째, 자관별로 유연한 분류체계를 가질 수 있도록 한 분류법으로 분류체계에 새로운 주제를 쉽게 삽입할 수 있거나 도서관 장서 규모에 따라 간략한 분류기호를 사용할 수 있도록 하였다. 넷째, 디지털 자료에 대한 접근점으로 고려할 수 있는 디렉토리를 제공하였다.
최근 스마트 기기를 통해 소셜미디어에 참여하는 사용자가 급격히 증가하고 있다. 이에 따라 빅데이터 분석에 대한 관심이 높아지고 있으며 최근 포털 사이트에서 검색어로 자주 입력되거나 다양한 소셜미디어에서 자주 언급되는 단어에 대한 분석을 통해 사회적 이슈를 파악하기 위한 시도가 이루어 지고 있다. 이처럼 다량의 텍스트를 통해 도출된 사회적 이슈의 기간별 추이를 비교하는 분석을 이슈 트래킹이라 한다. 하지만 기존의 이슈 트래킹은 두 가지 한계를 가지고 있다. 첫째, 전통적 방식의 이슈 트래킹은 전체 기간의 문서에 대해 일괄 토픽 분석을 실시하고 각 토픽의 기간별 분포를 파악하는 방식으로 이루어지므로, 새로운 기간의 문서가 추가되었을 때 추가된 문서에 대해서만 분석을 추가 실시하는 것이 아니라 전체 기간의 문서에 대한 분석을 다시 실시해야 한다는 실용성 측면의 한계를 갖고 있다. 둘째, 이슈는 끊임 없이 생성되고 소멸될 뿐 아니라, 때로는 하나의 이슈가 둘 이상의 이슈로 분화하고 둘 이상의 이슈가 하나로 통합되기도 한다. 즉, 이슈는 생성, 변화(병합, 분화), 그리고 소멸의 생명주기를 갖게 되는데, 전통적 이슈 트래킹은 이러한 이슈의 가변성을 다루지 않았다는 한계를 갖는다. 본 연구에서는 이러한 한계를 극복하기 위해 대상 기간 전체의 문서를 한꺼번에 분석하는 방식이 아닌 세부 기간별 문서에 대해 독립적인 분석을 수행하고 이를 통합할 수 있는 방안을 제시하였으며, 이를 통해 새로운 이슈가 생성되고 변화하며 소멸되는 전체 과정을 규명하였다. 또한 실제 인터넷 뉴스에 대해 제안 방법론을 적용함으로써, 제안 방법론의 실무 적용 가능성을 분석하였다.
국내 주식시장 내 개인 투자자들은 주식거래를 장기적인 투자방안보다 단기 매매차익 실현 수단으로 인식하고 있어 시장의 투명성과 건전성을 강화하기 위한 주식 시장관리제도의 역할이 중요하다. 특히, 개인 투자자들은 금융정책에 의한 시장조치로 불확실한 상황에 직면하여 투자환경에 따라 동태적 의사결정에 영향을 받게 되므로 투자자 보호를 위한 시장조치의 실효성 여부를 투자자들의 반응과 행동변화를 통해 접근할 필요가 있다. 본 연구는 시장관리 조치(상장적격성 실질심사) 전후로 개인 투자자 집단의 유형 및 반응의 변화추이를 분석하고자 하였다. 분석을 위해, 상장적격성 실질심사 대상기업 중 텍스트 분석이 가능한 9개의 기업을 선정(2009년~2014년)한 후, 국내 주식 관련 소셜 미디어(종목 토론실)로부터 웹 크롤링을 통해 개인들의 메시지를 수집하였다. 사건 발생에 따른 개인 투자자들의 관심사(토픽)와 변화추이는 텍스트 클러스터링과 토픽모델링 방법을 활용하여 개인 투자자 유형을 투자자와 비투자자 집단으로 분류하여 분석하였다. 분석결과, 특정 주식 종목 내 다양한 이해관계자 형태가 존재하며, 실질심사 대상 선정 전후로 비투자자 유형은 감소하고, 투자자는 시장 참여 유형에 따른 비중변화가 나타나는 현상을 발견하였다. 이러한 결과를 토대로 시장 조치에 따른 주식시장 내 제도의 영향을 시간(사건)경과에 따라 개인 투자자들의 반응변화를 통해 파악한 데 본 연구의 의의가 있다.
본 연구는 텍스트 마이닝 기법을 이용하여 산업수학과 관련한 논문들의 연구 현황 및 동향을 파악하는데 목적이 있다. 이를 위해 R로 1970년부터 2019년까지 SIAM Journal on Applied Mathematics 총 4910편 논문의 제목, 초록, 주제어를 수집하였으며, LDA 알고리즘 기반의 토픽모델링 분석을 수행하였다. 수집된 자료에 대한 coherence score 분석 결과, 토픽의 최적 개수는 20개로 결정하였으며, 핵심 연구 주제들은 Gibbs 샘플링 방법을 기반으로 추출하였다. 주요 분석 결과는 다음과 같다. 첫째, 해석학과 대수학을 중심으로 계산수학, 기하학, 수학적 모델링, 위상수학, 이산수학, 확률 및 통계학 등 다양한 수학 분야에서 산업수학 관련 연구가 진행되었다. 둘째, 연대별 연구 주제의 동향을 분석한 결과, 상승하는 연구 주제는 수리생물학, 비선형편미분방정식, 이산수학, 통계학, 위상수학으로, 하강하는 연구 주제는 확률론만 나타났다. 셋째, 2015개정 수학교육과정에서 반영되지 않은 분야 중 고등학교 수학교육과정에서 다루어야 할 내용으로 기수법, 행렬, 공간벡터, 복소수가 도출되었다. 마지막으로 분석 결과를 바탕으로 우리나라의 산업수학 활성화 방안과 본 연구의 제한점 및 후속 연구를 제시하였다.
본 연구의 목적은 최근 확산되고 있는 코로나19의 뉴스 빅데이터를 활용하여 언론을 통해 사회적으로 형성되고 있는 주요 의제가 무엇이며 어떻게 변화하는지 파악해, 추후 언론보도의 방향성을 제안하는 것이다. 이를 위해 2019년 12월 31일부터 2020년 3월 11일까지 보도된 47,816건의 뉴스 빅데이터를 감염병 위기경보 4단계(관심-주의-경계-심각)를 기준으로 4개 시기로 구분하여 토픽모델링 분석을 실시해, 총 20개의 토픽을 도출하였다. 토픽 모델링 분석 결과를 토대로, 본 연구에서는 다음 사항들을 제안하였다. 첫째, '불안', '공포' 등의 자극적인 표현을 자제하고 중립적이고 객관적인 보도용어 사용이 필요하다. 둘째, 단순 사건보도식 뉴스제작을 탈피하여, 더욱 심층적이고 맥락적인 뉴스 제작이 요구된다. 셋째, 감염병 관련 상황별 세부 위기커뮤니케이션 매뉴얼 마련이 필요하다. 넷째, 시민주도의 위기 극복노력을 중점적으로 조명하는 보도가 필요하다. 본 연구는 코로나19 뉴스 빅데이터를 토픽모델링 분석방법을 활용하여 분석한 최초의 논문이라는 학술적 의의와 국가 위기커뮤니케이션 정책개발의 기초자료로 활용될 수 있는 정책적 의의를 가진다.
본 연구의 목적은 LDA 토픽모델링을 활용하여 최근 5년간의 과학영재교육 관련 연구의 동향을 살펴보는 것이다. 보편적으로 이용되는 국내 학술 데이터 RISS, KISS, DBpia를 선정하여 국내 학술논문 292편을 수집해 2,404개의 키워드를 분석하였다. 주요 분석 결과는 다음과 같다. 첫째, 최근 과학영재교육 연구물 수는 2019년에 이르기까지 그 수가 줄어들고 있으며, 과학 영재교육 관련 연구에서 상위 10개의 주제어는 '학생', '프로그램', '초등', '수업', '창의성', '영재교육', '인식', '교사', '교육', '활동'으로 나타났다. 둘째, 토픽모델링 분석 결과로는 총 10개의 토픽이 도출되었다. 최근 5년간 과학 영재교육에서 주로 이루어진 연구주제는 '과학 영재학생의 정의적 특성', '중등 과학 영재학생의 특성', '과학영재교육 프로그램의 개발 및 적용', '과학고와 과학영재고의 교육활동', '과학 영재학생의 인지적 특성', '과학영재교육 정책', '과학영재학생과 창의성', '과학영재학생들의 연구수행교육', '과학영재학생의 학업과 진로선택', '과학 영재학생의 과학 개념'으로 나타났다. 과거에는 특정 토픽의 비중이 상대적으로 높게 나타났으나, 2019년으로 올수록 토픽 간 비중이 크게 차이가 나지 않는다. 따라서 최근으로 올수록 연구가 한 주제에 치우치지 않고 고루 진행되고 있다는 것을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.