• 제목/요약/키워드: Main Engine

검색결과 1,101건 처리시간 0.032초

디젤 주기관의 시운전 결과 및 성능 변화 추이에 관한 연구 (A Study on the Trial Results and Performance Trend of Diesel Main Engine)

  • 조권회;이동훈;손민수
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.73-74
    • /
    • 2005
  • Shipping company and operators have to manage well to keep shipping schedules without problems in main engine. Specially operators have to operate main engine within the limit of operation point, and adjust related parameters to be operated safely and continuously. Also operators have ability to analyze fouling condition of hull through comparing data gotten from P-V curve and performance results of new building ships in trial with service ships. In this study, not only compared main engine performance results in shop trial and sea trial, but also investigated performance trend in accordance with the time elapsed for the service ship's diesel engine. They were confirmed as follows. First, shop trial load is higher than sea trial load but ship's speed is satisfied with owner's contract speed. Second as time goes by, load of service ship increases steadily and other parameters related with main engine shows variable change depend on main engine load increasing.

  • PDF

경유 혼입을 고려한 엔진 메인 베어링의 유막거동에 관한 수치적 연구 (Numerical Analysis on the Oil Film Behavior of Engine Main Bearing Considering Dilution of Diesel Fuel)

  • 김한구
    • Tribology and Lubricants
    • /
    • 제26권4호
    • /
    • pp.240-245
    • /
    • 2010
  • This paper describes the influence on engine main bearing behavior of the oil film when the fuel is diluted on a diesel engine equipped with DPF system. Oil film pressure and the thickness is calculated in accordance to the fuel dilution. The calculation is based on the numerical analysis of the engine main bearing. As a result, the engine oil viscosity decreased as the fuel dilution increased. This led the increment of the maximum oil thickness pressure. Verification of the minimum oil film thickness settlement by the engine gas pressure and the fuel dilution was confirmed. Destruction possibility of the engine main bearing was foreseen when the engine speed was 2000 rpm with the fuel dilution 15% and the 5W40 engine oil.

선박 주기관 횡진동 구조보강 검토 (Study on the Structural Reinforcements for the Transverse Vibration of Ship's Main Engine)

  • 임홍일;신상훈
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2013년도 특별논문집
    • /
    • pp.55-59
    • /
    • 2013
  • Transverse vibrations of ship's aft end and deckhouse among the various modes of hull structures are induced mainly by transverse exciting forces and moments of main engine such as ${\times}$ and h-moment. Avoidance of resonance should be made in a intial design stage in case there is a prediction for resonance between main engine and transverse modes of deckhouse. This study shows a case of change in type of main engine from 12 cylinders to 10 without modification of hull structures in engine room requested by a shipowner of 8,600 TEU class container carrier and proposes a guide to the effective ways of structural arrangement for avoiding resonance between transverse exciting force and surrounding structures of main engine in engine room through case studies.

  • PDF

Load Characteristics of Engine Main Bearing : Comparison Between Theory and Experiment

  • Cho, Myung-Rae;Oh, Dae-Yoon;Ryu, Seung-Hyuk;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • 제16권8호
    • /
    • pp.1095-1101
    • /
    • 2002
  • The load characteristics of engine main bearing are very important in the design of crankshaft and engine block. The stiffness of crankshaft and block, or the optimal dimension of the bearing can be determined according to the load level. This paper presents the load characteristics of engine main bearing. Two components of the main bearing load are measured during engine firing and motoring. The vertical and horizontal load components are measured by using the dynamic load cell mounted in each main bearing cap bolt. The measured main bearing loads are compared with calculated results by using the statically determinate method. The theoretical results, provided in this study, agreed well with the experimental results. The presented results are very useful for achieving optimal design of engine.

다변량 관리도를 활용한 선박 메인 엔진의 이상 관리 상한선 결정에 관한 연구 (A Case Study on the Establishment of Upper Control Limit to Detect Vessel's Main Engine Failures using Multivariate Control Chart)

  • 배영목;김민준;김광재;전치혁;변상수;박개명
    • 대한조선학회논문집
    • /
    • 제55권6호
    • /
    • pp.505-513
    • /
    • 2018
  • Main engine failures in ship operations can lead to a major damage in terms of the vessel itself and the financial cost. In this respect, monitoring of a vessel's main engine condition is crucial in ensuring the vessel's performance and reducing the maintenance cost. The collection of a huge amount of vessel operational data in the maritime industry has never been easier with the advent of advanced data collection technologies. Real-time monitoring of the condition of a vessel's main engine has a potential to create significant value in maritime industry. This study presents a case study on the establishment of upper control limit to detect vessel's main engine failures using multivariate control chart. The case study uses sample data of an ocean-going vessel operated by a major marine services company in Korea, collected in the period of 2016.05-2016.07. This study first reviews various main engine-related variables that are considered to affect the condition of the main engine, and then attempts to detect abnormalities and their patterns via multivariate control charts. This study is expected to help to enhance the vessel's availability and provide a basis for a condition-based maintenance that can support proactive management of vessel's main engine in the future.

최적박용기관의 선정 및 그의 경제성 평가방법에 관한 연구 (A study on the selection of optimal marine engine and its techno- economical evaluation method)

  • 전효중;조기열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제8권2호
    • /
    • pp.51-66
    • /
    • 1984
  • The cost percentage of engine part in the total building cost of a ship is about 30-40% and the main engine occupies about 50% of the engine part cost. For certain ships the fuel bill can be as high as about 60-70% of the total operating cost after two oil shocks and its amount for one year is nearly equivalent to her main engine price. This fact has further increased the pressure on the engine builders to develop engines of higher efficiency and better possibilities to burn further deteriorated fuel qualities. But the energy-saving plants are ordinarily more expensive and their available amount of exhaust gas energy is less and therefore, they are not always profitable and optimum systems. This paper is prepared to decide the most economical and efficient engine systems by presenting reasonable selecting and economical evaluation methods of the main engine, which is the largest single unit and the most expensive, and its auxiliaries. In order to demonstrate the application of investigated methods in a practical case, a 46, 000 DWT class bulk carrier is selected as a model ship and her main engine and its auxiliaries are selected and evaluated. The result shows that the optimum determined has one year three months POP, 0.903 IRR at a year, 4, 116, 000 dollars PW in 15 years (for 5% escalation rate of fuel cost) and 9.522 BCR for same condition, when the engine plant of a same existing ship is taken as the basis.

  • PDF

Main Engine의 Heavy Spare Parts가 설치된 Engine Room Opening Deck의 방진 설계 사례 (A Vibration Isolation Design for Engine Room Opening Deck around Heavy Spare Parts of the Main Engine)

  • 전용훈;임구섭;정태석
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2009년도 특별논문집
    • /
    • pp.93-96
    • /
    • 2009
  • Foundation structure for the main engine heavy spare parts in the engine room is susceptible to resonance problem due to outfitting weight. In addition the deck floor has a large opening for the main engine installation and maintenance, which further weakens the foundation structure. To reinforce the weak structure, two types of approaches have been used; 1) insert an H-pillar below or above the floor and 2) increase the stiffener size. In this paper, the H-pillar approach is used to solve the vibration problem of the foundation structure in the engine room opening area. A commercial program is used to analyze the vibration problem ad to find the location and the size of the H-pillar. Modal test at the quay and on-board vibration measurement during the sea trial have confirmed the validity of inserting an H-pillar below the floor.

  • PDF

MATLAB/Simulink 모듈화 기반 우주왕복선 주엔진 시뮬레이션 툴박스 개발 (Development of MATLAB/Simulink Modular Simulation Toolbox for Space Shuttle Main Engine)

  • 조우성;차지형;고상호
    • 한국추진공학회지
    • /
    • 제23권4호
    • /
    • pp.50-60
    • /
    • 2019
  • 본 논문에서는 MATLAB/Simulink를 기반의 우주왕복선 주엔진(Space Shuttle Main Engine, SSME)의 툴박스 개발을 다루었다. 로켓엔진의 수학적 모델링에는 많은 시간과 신뢰성 확보가 필요하다. 로켓엔진 시뮬레이션 툴박스를 개발하면 이를 해결할 수 있으며 업그레이드와 새로운 엔진 개발의 용이성을 기대할 수 있다. SSME의 수학적 모델링은 7개의 지배방정식을 통해 유도한 32개의 미분방정식을 사용하여 구성하였으며 이를 구성요소 별로 모듈을 구별하여 SSME 시뮬레이션 툴박스를 개발하였다. 성능검증을 위하여 기존 시뮬레이션 결과와 비교하여 검증하였다.

진동 인텐시티 해석을 통한 원유운반선의 거주구 횡방향 진동 저감 연구 (Transverse vibration reduction at navigation bridge deck of the shuttle tanker using structural intensity analysis)

  • 김기선;김희원;주원호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.251-255
    • /
    • 2012
  • Structural intensity has been mainly utilized to identify vibration energy flow in a vessel. In this paper, the structural intensity of a shuttle tanker subjected to H-moment of the main engine was calculated using a finite element model. From the analysis, it was found that the top-bracing elements, which support the main engine onto the hull structure to prevent the excessive transverse vibration of the main engine, play the role of the dominant path and sink for vibration energy flow from the main engine. Therefore, the structural intensity was controlled by the modification of stiffness and damping characteristics of the top-bracing elements. As a result, it is observed that the transverse vibration level at the center of navigation bridge deck decreased after the control of structural intensity.

  • PDF

Volume-Junction Method를 이용한 우주왕복선 액체로켓엔진 열교환기 모델링 (Modeling of Space Shuttle Main Engine heat exchanger using Volume-Junction Method)

  • 차지형;고상호
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.213-217
    • /
    • 2017
  • 액체로켓엔진 고장에서 시동과정이 30% 이상을 차지하며 특히, 우주왕복선 주 엔진(Space Shuttel Main Engine, SSME)은 2%의 밸브위치 오차 또는 0.1초의 시간오차와 같은 작은 변화에도 급격하게 변화하는 매우 민감한 시스템으로 시동과정의 모델링이 중요하다. 하지만, 시동과정에서 비선형 질량 유량과 열전달 특성 때문에 많은 어려움이 발생한다. 본 논문에서는 이를 해결하기 위하여 부분적인 전산유체해석(Computational Fluid Dynamics, CFD) 방법을 사용하였으며 본 논문에서는 구성품의 모델링을 수행하여 정상상태에서 확인을 하였다.

  • PDF