• Title/Summary/Keyword: Main Die

Search Result 237, Processing Time 0.021 seconds

Numerical Evaluation of Hemming Defects Found on Automotive Door Panels (유한요소해석에 의한 자동차 도어패널의 헤밍 결함 평가)

  • Seo, O.S;Jeon, K.Y;Rhie, C.H;Kim, H.Y
    • Transactions of Materials Processing
    • /
    • v.24 no.4
    • /
    • pp.280-286
    • /
    • 2015
  • Hemming is used to connect two sheet metal components by folding the edge of an outer panel around an inner panel to create a smooth edge. The minimization of hemming defects is critical to the final quality of automobile products because hemming is one of the last operations during fabrication. Designing the hemmed part is not easy and is influenced by the geometry of the bent part. Therefore, the main problem for automotive parts is dimensional accuracy since formed products often deviate geometrically due to large springback. Few numerical approaches using 3-dimensional finite element model have been applied to hemming due to the small element size which is needed to properly capture the bending behavior of the sheet around small die corner and the comparatively big size of automotive opening parts, such as doors, hoods and deck lids. The current study concentrates on the 3-dimensional numerical simulation of hemming for an automotive door. The relationship between the design parameters of the hemming operation and the height difference defect is shown. Quality improvement of the automotive door can be increased through the study of model parameters.

A Parametric Study of the Hemming Process by Finite Element Analysis (유한요소해석에 의한 헤밍 공정 변수연구)

  • Kim, Hyung-Jong;Choi, Won-Mog;Lim, Jae-Kyu;Park, Chun-Dal;Lee, Woo-Hong;Kim, Heon-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.2
    • /
    • pp.149-157
    • /
    • 2004
  • Implicit finite element analysis of the flat surface-straight edge hemming process is performed by using a commercial code ABAQUS/Standard. Methods of finite element modeling for springback simulation and contact pair definition are discussed. An optimal mesh system is chosen through the error analysis that is based on the smoothing of discontinuity in the state variables. This study has focused on the investigation of the influence of process parameters in flanging, pre-hemming and main hemming on final hem quality, which can be defined by turn-down, warp and roll-in. The parameters adopted in this parametric study are flange length, flange angle, flanging die corner radius, face angle and insertion angle of pre-hemming punch, and over-stroke of pre-hemming and main hemming punches.

A Study on Injection Condition Optimization and Deformation Improvement using Taguchi Design of Experiments (다구찌 실험계획법을 이용한 사출 조건 최적화와 변형 개선에 대한 연구)

  • Young-Tae Yu;Sung-Min Mun;Sung-Young Jun;Kyoung-A Kim
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.62-69
    • /
    • 2023
  • In this study, we conducted a study on the optimization of injection molding conditions to minimize deformation of plastic product. The charging management system housing of the vehicle was selected as the research subject. Melting temperature, cooling temperature, packing time, and packing pressure were selected as the main factors expected to affect the deformation of molded products. Each main factor was divided into 5 levels. Optimization of injection molding conditions to minimize deformation was performed using the Taguchi Method. We performed an analysis of variance (ANOVA) to identify significant factors affecting the deformation of plastic product. In order to select injection molding conditions that minimize deformation of plastic products, injection molding analysis was additionally performed for insignificant factors. We then compared the deformation of the molded part before and after optimization. As a result of comparing the injection analysis results of the basic conditions and the injection analysis results of the optimal conditions, it was confirmed that the amount of deformation after optimization was improved by about 10.9%.

A Process Sequence Design of the Mulit-Step Cold Extrusion using Thick-Wall Pipes (중공축 소재를 이용한 다단계 냉간압출 공정의 설계)

  • Park, Chul;Choi, Ho-Joon;Hwang, Beong-Bok
    • Transactions of Materials Processing
    • /
    • v.5 no.3
    • /
    • pp.219-231
    • /
    • 1996
  • The current five-stage cold extrusion process to produce an axle-housing is investigated for the purpose of improved process. The main goal of this study is to obtain an appropriate reduced process sequence which can produce the required part most economically without tensile crack-ing workpiece buckling and overloading of the tools. The current process sequence is simulated and design criteria are examined. during the simulation several remeshings are done due to severe mesh distortions, Based on the results of simulations of the current five-stage process, design strategy for improving the process sequence are developed using the thick hollow pipes. The finished product of an axle-housing is produced in two operations and one annealing treatment while the conventional sequence consists of five operations and one annealing treat-ment. Also die loads of the new process are compared with those of the current one.

  • PDF

Tool Trajectory of Ball-End Mill in Consideration of Deflection when Pencil Cutting (펜슬가공시 공구변형을 고려한 볼엔드밀이 가공 궤적)

  • 윤경석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.88-93
    • /
    • 1997
  • Ball-end milling process is widely used in the die and mold manufacturing because of suitable for the machining of free-form surface. Pencil cutting can eliminate overload in uncut area caused by large diameter of ball-end mill before finish cutting. As the ball-end mill for pencil cutting is long and thin, it is easily deflected by cutting force. The tool deflection when pencil cutting is one of the main reason of the machining errors on a free-from surface. The purpose of the research is to find out the characteristics of deflected cutter trajectory by eddy-current sensor.

  • PDF

Process Design for Improving Tool Life in Hot Forging Process (열간 단조 공정에서 금형 수명 향상을 위한 공정 설계)

  • 이현철;김병민;김광호
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.18-25
    • /
    • 2003
  • This paper explains the process design for improving tool life in the conventional hot forging process. The thermal load and the thermal softening are happened by contact between the hotter billet and the cooler tools in hot forging process. Tool life decreases considerably due to the softening of the surface layer of a tool was caused by a high thermal load and long contact time between the tools and the billet. Also, tool life is to a large extent limited by wear, heat crack and plastic deformation in hot forging process. Above all, the main factors which affect die accuracy and tool life we wear and the plastic deformation of a tool. The newly developed techniques for predicting tool life are applied to estimate the production quantity for a spindle component and these techniques can be applied to improve the tool life in hot forging process.

A Study on the Stability of Explicit FE Analysis in the Sheet Metal Forming Analysis (박판 성형에서의 외연적 유한요소법의 안정성과 내연적 해석법과의 비교)

  • 심현보;전성문;손기찬
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.293-303
    • /
    • 2000
  • Recent developments of Fe technology make it possible to apply CAD/CAE/CAM techniques successfully to the stamping die design among the automotive parts industries. Those successful applications are greatly attributable to the development of commercial S/W. Up to now most commercial S/W for the analysis of sheet metal forming is based on the dynamic explicit algorithm. The main characteristics of dynamic explicit algorithm is that there is no convergence problem if the time increment is taken less than the stability limit. The stability of the analysis is guaranteed in the commercial code, since the adequate time increment is computed from the so called "Courant Condition". However excess computing time is often pointed out in the dynamic explicit analysis according to the characteristics of process parameters taken. In the study, various parameters that may affect the stability and the method how to improve computational efficiency of analysis have been investigated.estigated.

  • PDF

Recycling Process of WC Fine Powder Contained by Cemented Carbides Parts in JAPAN

  • Mitsuru Nakamura;Kim, Ha-Young;Hwang, Sun-Hyo
    • Proceedings of the KWS Conference
    • /
    • 1999.10a
    • /
    • pp.297-298
    • /
    • 1999
  • Cemented carbides material (WC-Co hard alloy) were recognized very important and expensive tool or die assembly parts because of compose for the main elements of rare metal (W and Co etc). This research was developed to separate and recover of WC fine powder contained by WC-Co materials. Recycling process was a new method named by the Tin impregnation for decobaltification on cemented carbides. This reaction occurred to product a brittle Co-Sn intermetallic compounds, thereafter it carried out by acid cleaning solution and physical milling or powdering. New process was able to recover about 60% WC fine powder from 1 to 5 ${\mu}{\textrm}{m}$.

  • PDF

A Study on the Characteristics Test of Automation System Using AC servo motor and Air cylinder for press Load/Unload (AC 서보모터와 Air 실린더를 이용한 프레스 취출용 자동화 시스템 특성시험에 관한 연구)

  • 김재열
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.107-112
    • /
    • 1997
  • In this study of made Autmation system is moving linear transfer system for mainly forming of small electronic unit and other at press line. This system for loading and unloading a workpiece has been installed in a press in order to load and unload a workpiece from a press die. Main Control method be used PLC. It took data of input from each sensor and send signal of output to actuator by sequence program also, we try to Characteristics test of this system has good condition when operating with raser measurmant.

  • PDF

Application of Expert System for Non-Axisymmetric Deep Drawing Products

  • Park, Diong-Hwan;Kang, Sung-Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.26-32
    • /
    • 2001
  • An ecpert system for rotationally symmetric deep drawing products has been developed. The application for non-axisymmetric components, however, has not been reported yet. This study construsctus and expert system for non-axisymmetric motor frame which shape is classified into ellipse in deep draqing process and investigates process sequence design with elliptical shape. The developed system consists of four modules. The first is recognition of calculate surface area for non-axisymmetric products. The third is blank design module the creates an oval-shaped blank with the same surface area. The fourth is a processplanning module based on production rules that play the best important roles in an expert system for manufacturing .The production rules are generated and upgraded by interviewing field engineers. Especially, drawing coefficient, punch and die radii for elliptical shape products are considered as main design parameters. The constructed system for elliptical deep drawing product would be very useful to reduce lead time and improve accuracy for products.

  • PDF