• Title/Summary/Keyword: Main Control Board

Search Result 181, Processing Time 0.026 seconds

발사체 추진제 탱크 수위 측정 및 제어 시스템 기초연구 (Fundamental Research on the Measurement and Control System of Level Sensor for Launch Vehicle Propellant Tanks)

  • 신동순;한상엽;조인현;이응신
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.393-396
    • /
    • 2008
  • Propellant consumption control for space launch vehicle can be achieved by propellant utilization system (PUS) and tank depletion system (TDS). In the course of developing new space launch vehicles, the main target of design is on reducing of space launch vehicle weight, which results in increasing both specific impulse and payload weight. The weights of space launch vehicles are generally allocated to structure, propulsion system, and propellants loaded. The quantity of propellants filled in propellant tanks may be estimated with the propellants actually consumed by propulsion system to complete its mission and the propellants left on-board at the time of engine shut-off. To minimize the remaining quantity of propellants on-board the supplying propellants' O/F ratio should be controlled from the certain time before engine shutdown. To control an O/F ratio, a control system, which accurately measures and compares the remainder of propellants in tanks and pipes, should be needed. This paper solely dedicates its contents to explore the merits and demerits of various level sensor, which is one of the important elements for PUS and TDS, and the transmission and control of signals within space launch vehicle.

  • PDF

선박 상부구조 진동 저감을 위한 능동형 제어장치의 실용화 연구 (A Study on the Practical Use of an Active Control System to Reduce Ship Superstructure Vibration)

  • 조대승;최태묵;김진형;정성윤;백광렬;이수목;배종국;이장우
    • 대한조선학회논문집
    • /
    • 제41권4호
    • /
    • pp.77-84
    • /
    • 2004
  • Active control is regarded as one of the most efficient and economic countermeasures to reduce excessive vibration of ship superstructure. However, it is difficult to find its practical application in real ships in spite that many studies on such systems have been done. In this study, for the practical use of an active control system to reduce ship superstructure vibration, we have developed an active vibration compensator consisting of a mechanical actuator having compact size and expected lifetime over 20 years, its control panel including exclusive signal processing and computing board, sensors to detect phase and vibration, and its operation software providing various user-interface functions. From the performance verification test of the system at a 5,500 TEU container carrier, we have confirmed the system could reduce ship superstructure vibration of a harmonic component of main engine rotating frequency up to 0.1 mm/s.

마이크로콘트롤러를 이용한 모형헬리콥터 정지비행 제어기 설계 (Design of hovering flight controller for a model helicopter using a microcontroller)

  • 박현식;이준호;이은호;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.185-188
    • /
    • 1993
  • The goal of this paper is to develop an on-board controller for a model helicopter's hovering attitude control, using i8096 one-chip microcontroller. Required controller algorithm is programmed in ASM-96 assembly language and downloaded into an i8096 microcontroller. The performance of hovering flight using this system is verified by experiments with the model helicopter mounted on an instrumented flight stand where 3 potentiometers and an optical proximity sensor measure te attitude and main rotor speed of the helicopter.

  • PDF

대용량 케이블 점검을 위한 모듈형 입.출력 버퍼 제어 시스템 설계 및 구현 (Design and Implementation of modulized I/O Buffer Control System for Large Capacity Cable Check)

  • 양종원;김대중;이상혁
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(5)
    • /
    • pp.243-246
    • /
    • 2002
  • This paper presents a study on the design and implementation of modulized I/O buffer control system for large capacity cable check. A 8bit I/O buffer basic module which has feedback loops with input and output buffers is simulated in PSpice and implemented with logic gates. This system is composed of 18 sub-boards which have 3 channels of 32bit data buses, and of a main board with MPC860 microprocessor.

  • PDF

PowerPC 및 VxWorks를 이용한 예인배열센서 데이터처리보드 개발 (A Design of LAS data processing board using PowerPC and VxWorks)

  • 임병선;김영길
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 추계학술대회
    • /
    • pp.371-374
    • /
    • 2009
  • 본 논문은 대한민국 해군의 차세대호위함인 FFX(Fast Frigate eXperimental)에 장착/운용되는 LAS(Line Array Sensor, 예인배열형센서)로부터 A,B,C 그룹 수중음향신호의 시리얼 데이터를 입력받아 약속된 Protocol로 Packing하여, 고속 데이터통신과 Optic-fiber채널 장거리 전송이 가능한 SFM(Serial FPDP Module)을 통해 신호처리단으로 실시간 전송하는 센서데이터입출력처리보드의 설계/제작 및 시험에 관해 논한다. VME 6U크기의 한정된 보드 공간을 고려하여 Freescale사의 PowerPC계열인 MPC8265 CPU와, FIFO등의 외부디바이스를 줄이고 자체시뮬레이션 데이터생성등을 위해 Altera사의 CycloneIII 계열 FPGA등을 사용하여 설계하고, 실시간 데이터 전송을 보장하며 각종 Device Driver, Peripheral Controller등의 Library를 제공하는 RTOS인 VxWorks를 Porting하여 소프트웨어를 개발하였다.

  • PDF

NON-UNIFORMITY CORRECTION- SYSTEM ANALYSIS FOR MULTI-SPECTRAL CAMERA

  • Park Jong-Euk;Kong Jong-Pil;Heo Haeng-Pal;Kim Young Sun;Chang Young Jun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.478-481
    • /
    • 2005
  • The PMU (Payload Management Unit) is the main subsystem for the management, control and power supply of the MSC (Multi-Spectral Camera) Payload operation. It is the most important function for the electro-optical camera system that performs the Non-Uniformity Correction (NUC) function of the raw imagery data, rearranges the data from the CCD (Charge Coupled Device) detector and output it to the Data Compression and Storage Unit (DCSU). The NUC board in PMU performs it. In this paper, the NUC board system is described in terms of the configuration and the function, the efficiency for non-uniformity correction, and the influence of the data compression upon the peculiar feature of the CCD pixel. The NUC board is an image-processing unit within the PMU that receives video data from the CEV (Camera Electronic Unit) boards via a hotlinkand performs non-uniformity corrections upon the pixels according to commands received from the SBC (Single Board Computer) in the PMU. The lossy compression in DCSU needs the NUC in on-orbit condition.

  • PDF

Habitability evaluation considering various input parameters for main control benchboard fire in the main control room

  • Byeongjun Kim ;Jaiho Lee ;Seyoung Kim;Weon Gyu Shin
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4195-4208
    • /
    • 2022
  • In this study, operator habitability was numerically evaluated in the event of a fire at the main control bench board (MCB) in a reference main control room (MCR). It was investigated if evacuation variables including hot gas layer temperature (HGLT), heat flux (HF), and optical density (OD) at 1.8 m from the MCR floor exceed the reference evacuation criteria provided in NUREG/CR-6850. For a fire model validation, the simulation results of the reference MCR were compared with existing experimental results on the same reference MCR. In the simulation, various input parameters were applied to the MCB panel fire scenario: MCR height, peak heat release rate (HRR) of a panel, number of panels where fire propagation occurs, fire propagation time, door open/close conditions, and mechanical ventilation operation. A specialized-average HRR (SAHRR) concept was newly devised to comprehensively investigate how the various input parameters affect the operator's habitability. Peak values of the evacuation variables normalized by evacuation criteria of NUREG/CR-6850 were well-correlated as the power function of the SAHRR for the various input parameters. In addition, the evacuation time map was newly utilized to investigate how the evacuation time for different SAHRR was affected by changing the various input parameters. In the previous studies, it was found that the OD is the most dominant variable to determine the MCR evacuation time. In this study, however, the evacuation time map showed that the HF is the most dominant factor at the condition of without-mechanical ventilation for the MCR with a partially-open false ceiling, but the OD is the most dominant factor for all the other conditions. Therefore, the method using the SAHRR and the evacuation time map was very useful to effectively and comprehensively evaluate the operator habitability for the various input parameters in the event of MCB fires for the reference MCR.

조립용 로보트의 힘.토오크 센서 및 컴플라이언스 알고리즘의 개발 (Development of Force/Torque Sensor and Compliance Algorithm for Assembly Robots)

  • 고낙용;고명삼;하인중;이범희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 전기.전자공학 학술대회 논문집(I)
    • /
    • pp.244-248
    • /
    • 1987
  • The force/torque sensor for robot is developed. The compliance algorithm for peg-in-hole insertion task using the forec/troque sensor is developed. The system consists of an IBM PC, robot, force/torque sensor, strain meter, A/D board, and interface board. The IBM PC functions as a main processor and the robot controller as a slave processor. The sensor is constructed to measure $T_x$, $T_y$, $F_z$ which are necessary to precisely execute a peg-in-hole insertion task by SCARA type assembly robot. The outputs of sensor are analyzed. On the basis of the analysis, compliance algorithm for peg-in-hole insertion task is developed. Some comments concerning the development of wrist force/torque sensor and compliance algorithm are given.

  • PDF

발사체 추력백터제어 구동장치용 컴퓨터 하드웨어 설계

  • 박문수;이희중;민병주;최형돈
    • 항공우주기술
    • /
    • 제3권2호
    • /
    • pp.56-64
    • /
    • 2004
  • 본 연구에서는 소형위성발사체의 고체모터 가동노즐용 추력벡터제어 구동장치를 제어하기 위한 컴퓨터 하드웨어 설계에 관한 내용을 기술하였다. 구동장치 제어 컴퓨터는 관성항법장치로부터 제어명령을 받아 작동기를 구동하는 장치로, 발사체 내외의 다른 장비들과 통신을 하는 기능도 갖추고 있다. 구동장치 제어 컴퓨터는 고속의 제어 알고리즘 연산에 적합하도록 디지털 시그널 프로세서를 주 프로세서로 채택하여 KSR-III의 아나로그 제어기와 비교할 때 안정성과 신뢰성, 유연성을 더 갖추도록 설계하였다. 설계된 제어 컴퓨터는 여기 프로그램 개발용 타겟 보드 제작을 거쳐 1차 시제품으로 개발되었다. 여기에서는 최상위단계의 설계 요구조건과 하드웨어 구성, 지상지원장비에 대해서도 기술하였다.

  • PDF

고속전철용 Event Recorder를 위한 제어 방식 개발 (Development of Control Method for Event Recorder in High Speed Train)

  • 송규연;임현재;장태욱
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.1182-1188
    • /
    • 2011
  • By storing various train information in running high speed train, we can analyze the cause of train accident efficiently. we have developed the smart and high available control method to control and manage the hardware modules. The hardware modules for event recorder consist CPU, Digital Input and Output, Pulse Input, Communication, Control Panel and Crash Protected Memory. The real time operation system is used to totally control and manage the various hardware modules. The main function of control method is collection of train information, calculation of train speed, interface with other on-board control system, storing and retrieving train information, and communication with Control Panel. In Control Panel, it displays the current train speed and the status of event recorder effectively. Also user interface is provided in Control Panel.

  • PDF